FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective

 FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective

多元时间序列(MTS)预测在许多行业中显示出重要的意义。当前最先进的基于图神经网络(GNN)的预测方法通常需要图网络(如GCN)和时间网络(如LSTM)来分别捕获序列间(空间)动态和序列内(时间)依赖关系。然而,两种网络的不确定兼容性给手工制作的模型设计带来了额外的负担。此外,分离的时空建模自然违背了现实世界中统一的时空相互依赖关系,这在很大程度上影响了预测效果。为了克服这些问题,我们探索了直接应用图网络的有趣方向,并从纯图的角度重新思考MTS预测。我们首先定义了一种新的数据结构,hypervariate graph,它将每个序列值(无论变量或时间戳)视为一个图节点,并将滑动窗口表示为时空全连接图该视角统一考虑时空动态,将经典的MTS预测重新表述为对超变量图的预测。然后,我们提出了一种新的傅立叶图神经网络(FourierGNN)架构,通过堆叠我们提出的傅立叶图算子(FGO)在傅立叶空间中执行矩阵乘法。FourierGNN具有较强的表达能力和较低的复杂度,能够有效地完成预测。此外,我们的理论分析揭示了FGO在时域上与图卷积的等价性,进一步验证了FourierGNN的有效性。在七个数据集上进行的大量实验表明,与最先进的方法相比,我们的性能更优,效率更高,参数更少。

1.关键点

 

我们假设超变量图Gt中的所有节点都是全连接的。超变量图Gt包含NT个节点,表示Xt中每个时间戳处的每个变量的值,它可以学习跨时间戳和变量的高分辨率表示。我们可以将多元时间序列预测任务重新表述为对超多元图的预测 

注意:从超变量图上没看出这种方式具有的能够学习统一的空间动态性和时间依赖性 

2. Multivariate Time Series Forecasting with FourierGNN 

 

 总结:1. 论文的关键点两个 一个是超变量图 另一个是傅里叶图卷积。

 

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值