Physics-informed Neural Network for Nonlinear Dynamics in Fiber Optics论文笔记

该研究利用Physics-Informed Neural Networks (PINN)解决光纤中的非线性动力学问题,深入探讨了dispersion、self-phase modulation和高阶非线性效应。通过将峰值功率作为额外输入,PINN能适应不同场景,展示出良好的泛化能力和优于数据驱动神经网络的性能,同时需要较少的数据和较低的计算复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Physics-informed Neural Network for Nonlinear Dynamics in Fiber Optics

  • 作者:
    Xiaotian Jiang1, Danshi Wang1,∗, Qirui Fan2, Min Zhang1, Chao Lu3, and Alan Pak Tao Lau2
  • 时间:2021
  • 期刊:arixiv

摘要

  • 研究PINN求解用于学习光纤非线性动力学的Schrödinger方程,对多种物理效应进行深入研究,包括dispersion, self-phase modulation, and higher-order nonlinear effects。special case (soliton propagation) and general case (multi-pulse propagation)也被研究。
  • 以前的PINN主要在单一情况下有效,为了克服这一问题,物理参数(子脉冲的峰值功率和振幅)作为附加的输入参数,使PINN能够学习不同场景的物理约束,具有良好的泛化性能
  • PINN表现出比数据驱动神经网络更好的性能同时使用更少的数据,其计算复杂度(从乘法数来看)远远低于分步傅里叶方法。

问题定义

Nonlinear Dynamics in Fiber Optics问题可以描述为在这里插入图片描述
其中
在这里插入图片描述
通过分解实部与虚部,该问题可被定义为

在这里插入图片描述
在这里插入图片描述

方法

  • 输入为(z,t)
    在这里插入图片描述

针对求解的问题,PINN损失函数定义为
在这里插入图片描述
上式前两项是初值构建的约束,后两项是满足PDE的约束。

  • 输入为(z,t,p),其中p是峰值,(被拉成一列作为输入)
    在这里插入图片描述

实验结果

在这里插入图片描述

思考

  • 这里提到了不同峰值功率值作为输入,得到不同峰值功率下的求解域。
好的,以下是用 PINN 求解二阶 Diffusion 方程的 PyTorch 代码: ```python import torch import numpy as np import matplotlib.pyplot as plt # 定义求解区域的左右边界 x_left = 0.0 x_right = 1.0 # 定义时间和空间步长 delta_t = 0.001 delta_x = 0.05 # 定义神经网络的输入维度和隐藏层维度 input_dim = 2 hidden_dim = 10 # 定义神经网络的输出维度 output_dim = 1 # 定义 Diffusion 方程的初始条件和边界条件 def u_init(x): return np.sin(np.pi * x) def u_left(t): return 0.0 def u_right(t): return 0.0 # 定义神经网络模型 class PINN(torch.nn.Module): def __init__(self): super(PINN, self).__init__() self.fc1 = torch.nn.Linear(input_dim, hidden_dim) self.fc2 = torch.nn.Linear(hidden_dim, hidden_dim) self.fc3 = torch.nn.Linear(hidden_dim, output_dim) def forward(self, x, t): # 拼接时间和空间坐标作为神经网络的输入 xt = torch.cat([x, t], dim=1) h1 = torch.tanh(self.fc1(xt)) h2 = torch.tanh(self.fc2(h1)) out = self.fc3(h2) return out # 定义 PINN 的损失函数 def pinn_loss(model, x_left, x_right, delta_t, delta_x): # 定义空间和时间的网格 x = torch.linspace(x_left, x_right, int((x_right - x_left) / delta_x) + 1).unsqueeze(1) t = torch.linspace(0, 1, int(1 / delta_t) + 1).unsqueeze(1) # 计算模型在内部网格点上的预测值 x_internal = x[1:-1] t_internal = t[1:-1] u_internal = model(x_internal, t_internal) # 计算模型在左右边界上的预测值 u_left_boundary = model(x_left, t_internal) u_right_boundary = model(x_right, t_internal) # 计算初始条件和边界条件的损失 init_loss = torch.mean((model(x, torch.zeros_like(x)) - u_init(x)) ** 2) left_boundary_loss = torch.mean((u_left_boundary - u_left(t_internal)) ** 2) right_boundary_loss = torch.mean((u_right_boundary - u_right(t_internal)) ** 2) # 计算 Diffusion 方程的残差 u_x = torch.autograd.grad(u_internal, x_internal, grad_outputs=torch.ones_like(u_internal), create_graph=True)[0] u_xx = torch.autograd.grad(u_x, x_internal, grad_outputs=torch.ones_like(u_x), create_graph=True)[0] f = u_xx - (1 / delta_t) * (u_internal - u_init(x_internal)) # 计算残差的损失 residual_loss = torch.mean(f ** 2) # 计算总的损失 loss = init_loss + left_boundary_loss + right_boundary_loss + residual_loss return loss # 初始化神经网络模型和优化器 model = PINN() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练神经网络模型 for i in range(10000): optimizer.zero_grad() loss = pinn_loss(model, x_left, x_right, delta_t, delta_x) loss.backward() optimizer.step() if i % 1000 == 0: print("Iteration {}, Loss = {}".format(i, loss.item())) # 使用训练好的神经网络模型进行预测 x_test = torch.linspace(x_left, x_right, 101).unsqueeze(1) t_test = torch.linspace(0, 1, 1001).unsqueeze(1) u_test = model(x_test, t_test).detach().numpy() # 绘制预测结果 X, T = np.meshgrid(x_test, t_test) plt.pcolormesh(X, T, u_test, cmap='coolwarm') plt.colorbar() plt.xlabel("x") plt.ylabel("t") plt.title("PINN Solution to Diffusion Equation") plt.show() ``` 这段代码中,首先定义了求解区域的左右边界、时间和空间步长等参数,然后定义了 Diffusion 方程的初始条件和边界条件,以及神经网络模型和损失函数。在训练神经网络模型时,使用了 Adam 优化器,最后使用训练好的模型进行预测,并绘制了预测结果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pinn山里娃

原创不易请多多支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值