VSG 并网状态下,考虑到弱电网下线路阻抗不能忽略,VSG 的功率传输模型可以表示为 VSG 的输出电压经过线路阻抗后串联至电网(考虑滤波电感,且忽略滤波电容作用)。设 U 为 VSG 输出电压的幅值,Ug为电网电压的幅值,并将电网的相位视作基准相位,即相角为 0。则表示为输出电压 U 和电网电压 Ug之间相位差,类似于同步发电机中内电势和机端电压之间的功角。线路阻抗表示为。VSG 的功率传输模型和矢量关系如图 1 和图 2所示。
图1 VSG的功率传输模型
图2 VSG功角矢量图
易知线路电流可表示为:
由此可以推导出 VSG 馈入电网的功率为:
公式(1-2)中,S 为复功率,为的共轭,Pe和 Qe分别为 VSG 馈入电网的有功功率和无功功率。将具体的线路阻抗参数
带入上式则有功无功功率进一步可以表示为:
从式(1-3)可以看出 VSG 的输出的有功无功不仅和线路阻抗有关,还跟两侧的相位差有关。从 VSG 的输出功角特性可以看出功率的流向和电压降的方向有关,同时还反映出功率之间存在的耦合关系,针对不同的线路阻抗情况,需要选择不同的控制策略来消除耦合。下面依次针对线路阻抗呈纯感性,纯阻性和阻感性的情况来分析,且默认功角都比较小,则
, 。
当线路阻抗为纯感性时,即时:
分别对上式求和 U 的偏导可得:
从式(1-5) 中可以看出,有功功率 Pe 主要与功角变化相关,受输出电压影响较小,无功功率 Qe 完全受输出电压影响,与功角无关。实现了功率的解耦, 并可以据此设计有功-频率和无功-电压的控制环节。
当线路阻抗为纯阻性时,即 时:
分别对上式求 和 U 的偏导可得:
从式(1-7) 中可以看出有功功率 Pe 完全受输出电压影响,不受功角变化的影响,无功功率 Qe 主要受功角影响,受输出电压影响较小。此时无法满足VSG 有功-频率和无功-电压的下垂特性要求。当线路阻抗为阻感性时,即时:
分别对上式求 和 U 的偏导可得:
从式(1-9) 中可以看出 VSG 输出的有功和无功功率与电压和功角均有较大耦合,不能直接实现 VSG 的有功调频和无功调压特性。针对弱电网下,线路阻抗无法忽略使输出的有功无功功率存在耦合的问题,可以利用 VSG 控制算法中的定子电气方程来添加虚拟电阻和虚拟电感,改变线路的等效参数,使逆变器输出端和电网之间的等效线路阻抗含有较多感性成分,优化阻感比,且保持较小功角,实现 VSG 的解耦控制,保证系统的稳定性。