一、自然底数 e e e的定义式
定义式:
e = lim n → ∞ ( 1 + 1 n ) n e=\lim\limits_{n \to \infty}(1+\frac{1}{n})^{n} e=n→∞lim(1+n1)n
理解:
假设银行年利率为100%,如果利息一年结一次,那么把1元存入银行,一年后可以得到1元的利息,本息合计2元;如果利息半年结一次,那么把1元存入银行,半年后可以得到0.5元的利息,如果把这0.5元继续存入银行,那么再过半年后本息合计2.25元;如果利息一天结一次,且每次结算后的利息继续存入银行,那么一年后本息合计 ( 1 + 1 365 ) 365 ≈ 2.715 (1 + \frac{1}{365})^{365} \approx 2.715 (1+3651)365≈2.715元。
可以看到2.715已经很接近自然底数 e e e的值了,如果银行连续不断地结算利息,我们也连续不断地把利息继续存入银行,即 n → ∞ n \to \infty n→∞,那么一年后本息合计 e e e元。
不难理解,自然底数 e e e的意义就是对于一个连续增长的事物,如果单位时间的增长率为100%,那么经过一个单位时间后,其将变成原来的 e e e倍。
二、对以 e e e为底的指数函数和对数函数的理解
e x e^{x} ex:经过 x x x个单位时间的连续增长后的数量(单位时间的增长率为100%)
ln x \ln x lnx:增长到 x x x倍所需要的时间(单位时间的增长率为100%),当 0 < x < 1 0<x<1 0<x<1时 ln x \ln x lnx为负数,此时 ln x \ln x lnx的值表示需要回退的时间
三、欧拉公式的推导
1. 我们可以简单地把欧拉公式理解为把自然底数 e e e的定义扩充到了复平面上。
如果说银行存款只有一个连续增长方向,那就是变多,在单位时间增长率为100%的情况下(1元变成2元),每次变多 1 n \frac{1}{n} n1元,一共变多 n n n次;
那么欧拉公式所做的事情就是连续逆时针旋转复平面上的向量,在单位时间增长率为100%的情况下( 1 + i ⋅ 0 1+i \cdot 0 1+i⋅0变成 1 + i ⋅ 1 1+i \cdot 1 1+i⋅1,即垂直于向量的方向增加1),每次往垂直于当前向量的方向增加 1 n \frac{1}{n} n1个单位长度(即 + i n +\frac{i}{n} +ni),一共增加 n n n次。
1块钱经过单位时间的连续增长后变成了 e e e块钱,向量 1 + i ⋅ 0 1+i \cdot 0 1+i⋅0经过单位时间的连续逆时针旋转后变成了 c o s 1 + i ⋅ s i n 1 cos1+i \cdot sin1 cos1+i⋅sin1,即为如下等式:
e i = lim n → ∞ ( 1 + i ⋅ 100 % n ) n = c o s 1 + i ⋅ s i n 1 e^{i}=\lim\limits_{n \to \infty}(1+\frac{i \cdot 100\%}{n})^{n}=cos1+i \cdot sin1 ei=n→∞lim(1+ni⋅100%)n=cos1+i⋅sin1
2. 下面来解释为什么会有上面那个等式。
每往垂直于当前向量的方向增加 1 n \frac{1}{n} n1个单位长度(即 + i n +\frac{i}{n} +ni)后,向量的模长就变为原来的 lim n → ∞ 1 2 + ( 1 n ) 2 \lim\limits_{n \to \infty}\sqrt{1^{2}+(\frac{1}{n})^{2}} n→∞lim12+(n1)2倍,那么旋转n次后向量的模长变为原来的 lim n → ∞ ( 1 2 + ( 1 n ) 2 ) n = lim n → ∞ ( 1 + 1 n 2 ) n 2 ⋅ 1 2 n = lim n → ∞ e 1 2 n = 1 \lim\limits_{n \to \infty}(\sqrt{1^{2}+(\frac{1}{n})^{2}})^{n}=\lim\limits_{n \to \infty}(1+\frac{1}{n^{2}})^{n^{2} \cdot \frac{1}{2n}}=\lim\limits_{n \to \infty}e^{\frac{1}{2n}}=1 n→∞lim(12+(n1)2)n=n→∞lim(1+n21)n2⋅2n1=n→∞lime2n1=1倍,即旋转后向量模长不变。
每往垂直于当前向量的方向增加 1 n \frac{1}{n} n1个单位长度(即 + i n +\frac{i}{n} +ni)后,向量的角度增加 lim n → ∞ a r c t a n ( 1 n ) = 1 n \lim\limits_{n \to \infty}arctan(\frac{1}{n})=\frac{1}{n} n→∞limarctan(n1)=n1,那么旋转n次后向量的角度逆时针旋转了 lim n → ∞ n ⋅ a r c t a n ( 1 n ) = 1 \lim\limits_{n \to \infty}n \cdot arctan(\frac{1}{n})=1 n→∞limn⋅arctan(n1)=1个弧度。
再将旋转后的向量分解到实数轴和虚数轴后即可得到 e i = c o s 1 + i ⋅ s i n 1 e^{i}=cos1+i \cdot sin1 ei=cos1+i⋅sin1。
3. 推广得到欧拉公式
如果我们把单位时间的增长率从100%改成 x x x即可得到欧拉公式:
e i x = lim n → ∞ ( 1 + i x n ) n = c o s x + i ⋅ s i n x e^{ix}=\lim\limits_{n \to \infty}(1+\frac{ix}{n})^{n}=cosx+i \cdot sinx eix=n→∞lim(1+nix)n=cosx+i⋅sinx
每往垂直于当前向量的方向增加 x n \frac{x}{n} nx个单位长度(即 + i x n +\frac{ix}{n} +nix)后,向量的模长就变为原来的 lim n → ∞ 1 2 + ( x n ) 2 \lim\limits_{n \to \infty}\sqrt{1^{2}+(\frac{x}{n})^{2}} n→∞lim12+(nx)2倍,那么旋转n次后向量的模长变为原来的 lim n → ∞ ( 1 2 + ( x n ) 2 ) n = lim n → ∞ ( 1 + x 2 n 2 ) n 2 x 2 ⋅ x 2 2 n = lim n → ∞ e x 2 2 n = 1 \lim\limits_{n \to \infty}(\sqrt{1^{2}+(\frac{x}{n})^{2}})^{n}=\lim\limits_{n \to \infty}(1+\frac{x^{2}}{n^{2}})^{\frac{n^{2}}{x^{2}} \cdot \frac{x^{2}}{2n}}=\lim\limits_{n \to \infty}e^{\frac{x^{2}}{2n}}=1 n→∞lim(12+(nx)2)n=n→∞lim(1+n2x2)x2n2⋅2nx2=n→∞lime2nx2=1倍,即旋转后向量模长不变。
每往垂直于当前向量的方向增加 x n \frac{x}{n} nx个单位长度(即 + i x n +\frac{ix}{n} +nix)后,向量的角度增加 lim n → ∞ a r c t a n ( x n ) = x n \lim\limits_{n \to \infty}arctan(\frac{x}{n})=\frac{x}{n} n→∞limarctan(nx)=nx,那么旋转n次后向量的角度逆时针旋转了 lim n → ∞ n ⋅ a r c t a n ( x n ) = x \lim\limits_{n \to \infty}n \cdot arctan(\frac{x}{n})=x n→∞limn⋅arctan(nx)=x个弧度。
再将旋转后的向量分解到实数轴和虚数轴后即可得到 e i x = c o s x + i ⋅ s i n x e^{ix}=cosx+i \cdot sinx eix=cosx+i⋅sinx。