【微分方程】工科解常微分方程方法与公式集合

欢迎纠错


#一阶经典法

##可分离变量型

f 1 ( x )   d x = f 2 ( y )   d y ∫ f 1 ( x )   d x = ∫ f 2 ( y )   d y f_1(x)\space dx=f_2(y)\space dy\\ \int f_1(x)\space dx=\int f_2(y)\space dy f1(x) dx=f2(y) dyf1(x) dx=f2(y) dy

##不可分\齐次

利 用 变 量 间 的 关 系 , 例 : y x = u 利用变量间的关系,例:\frac y x=u xy=u

##一阶线性微分方程

d y d x + P ( x ) y = Q ( x )   y = e − ∫ P ( x ) d x [ ∫ e ∫ P ( x ) d x ⋅ Q ( x ) + C ]   P ( x ) 若 积 分 出 了 ln ⁡ , 不 用 加 绝 对 值 \frac{dy}{dx}+P(x)y=Q(x)\\\ \\ y=e^{-\int P(x)dx}[\int e^{\int P(x)dx} \cdot Q(x)+C] \\\ \\ P(x)若积分出了\ln ,不用加绝对值 dxdy+P(x)y=Q(x) y=eP(x)dx[eP(x)dxQ(x)+C] P(x)ln

#二阶经典法

##可降阶二阶

缺 y 型 : y ′ = p   ,   y ′ ′ = p ′ = d p d x   缺 x 型 : y ′ = p   ,   y ′ ′ = p ′ = d p d x = d p d y d y d x = d p d y ⋅ p 缺y型:y'=p\space,\space y''=p'=\frac{dp}{dx}\\\ \\ 缺x型:y'=p \space,\space y''=p'=\frac{dp}{dx}=\frac{dp}{dy}\frac{dy}{dx}=\frac{dp}{dy}\cdot p yy=p , y=p=dxdp xy=p , y=p=dxdp=dydpdxdy=dydpp

##二阶常系数齐次线性微分方程

特 征 方 程   r 2 + p r + q = 0 的 根   r 1 , r 2 微 分 方 程   y ′ ′ + p y ′ + q y = 0 的 通 解 一 对 不 等 实 根   r 1 ≠ r 2 y = C 1 e r 1 x + C 2 e r 2 x 一 对 相 等 实 根   r 1 = r 2 y = ( C 1 + C 2 x ) e r 1 x 一 对 共 轭 复 根   r 1 , 2 = α ± β i , b > 0 y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x )   如 遇 到 高 阶 微 分 方 程 , 则 在 写 特 征 方 程 时 候 因 式 分 解 , 得 到 各 路 根 \begin{array}{c|c} 特征方程 \space r^2+pr+q=0 的根\space r_1,r_2& 微分方程 \space y''+py'+qy=0 的通解 \\ \hline 一对不等实根 \space r_1\ne r_2 &y=C_1e^{r_1x}+C_2e^{r_2x} \\ 一对相等实根 \space r_1= r_2 &y= (C_1+C_2x)e^{r_1x}\\ 一对共轭复根 \space r_{1,2}=\alpha \pm \beta i,b>0 & y=e^{\alpha x}(C_1\cos \beta x+C_2\sin \beta x) \\ \end{array}\\\ \\ 如遇到高阶微分方程,则在写特征方程时候因式分解,得到各路根  r2+pr+q=0 r1,r2 r1=r2 r1=r2 r1,2=α±βi,b>0 y+py+qy=0y=C1er1x+C2er2xy=(C1+C2x)er1xy=eαx(C1cosβx+C2sinβx) 
若 p = 0 对 于 第 一 种 , 有   y = B 1 cosh ⁡ ( K x ) + B 2 sinh ⁡ ( K x )   对 于 第 三 种 , 有   y = e α x ( A 1 e j β t + A 2 e − j β t ) = ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) 若p=0\\ 对于第一种,有\\\ \\ y=B_1\cosh(Kx)+B_2\sinh(Kx)\\\ \\ 对于第三种,有\\\ \\ y=e^{\alpha x}(A_1e^{j\beta t}+A_2e^{-j\beta t})=(C_1\cos \beta x+C_2\sin \beta x) p=0 y=B1cosh(Kx)+B2sinh(Kx)  y=eαx(A1ejβt+A2ejβt)=(C1cosβx+C2sinβx)

##二阶常系数非齐次线性微分方程

1 : P m ( x ) e α x 型   y ′ ′ + p y ′ + q y = P m ( x ) e α x 则 y ∗ = x k Q m ( x ) e α x   Q m ( x ) 为 m 次 多 项 式 , 系 数 待 定 ( m + 1 个 待 定 系 数 )   k = { 0 , α 不 是 r 2 + p r + q = 0 的 根 1 , α 是 r 2 + p r + q = 0 的 单 根 2 , α 是 r 2 + p r + q = 0 的 重 根 1:P_m(x)e^{\alpha x}型\\\ \\ y''+py'+qy=P_m(x)e^{\alpha x}\\则\\ y^*=x^kQ_m(x)e^{\alpha x}\\\ \\ Q_m(x)为m次多项式,系数待定(m+1个待定系数)\\\ \\ k = \begin{cases} 0, & \alpha 不是r^2+pr+q=0 的根 \\ 1, & \alpha 是r^2+pr+q=0 的单根\\ 2, & \alpha 是r^2+pr+q=0 的重根 \end{cases} 1:Pm(x)eαx y+py+qy=Pm(x)eαxy=xkQm(x)eαx Qm(x)mm+1 k=0,1,2,αr2+pr+q=0αr2+pr+q=0αr2+pr+q=0
2 :   y ′ ′ + p y ′ + q y = f ( x )   f ( x ) = e λ x [ P l ( x ) cos ⁡ ω x + Q n ( x ) sin ⁡ ω x ] 则   y ∗ = x k e λ x [ R m ( 1 ) ( x ) cos ⁡ ω x + R m ( 2 ) ( x ) sin ⁡ ω x ] m = max ⁡ ( l , n )   R m ( x ) 为 m 次 多 项 式 , 系 数 待 定 ( m + 1 个 待 定 系 数 )   k = { 0 , λ ± ω i   不 是 特 征 根 1 , λ ± ω i   是 特 征 根 2:\\\ \\ y''+py'+qy=f(x)\\\ \\ f(x)=e^{\lambda x}[P_l(x)\cos \omega x+Q_n(x)\sin \omega x]\\则\\\ \\ y^*=x^ke^{\lambda x}[R_m^{(1)}(x)\cos \omega x+R_m^{(2)}(x)\sin \omega x]\\ m=\max(l,n)\\\ \\ R_m(x)为m次多项式,系数待定(m+1个待定系数)\\\ \\ k = \begin{cases} 0, & \lambda \pm \omega i \space不是特征根 \\ 1, & \lambda \pm \omega i \space是特征根\\ \end{cases} 2: y+py+qy=f(x) f(x)=eλx[Pl(x)cosωx+Qn(x)sinωx] y=xkeλx[Rm(1)(x)cosωx+Rm(2)(x)sinωx]m=max(l,n) Rm(x)mm+1 k={0,1,λ±ωi λ±ωi 
常 见 特 解 形 式 : f ( x ) y C B x p B 1 x p + B 2 x p − 1 + ⋯ + B p x + B p + 1 e a x B e a x c o s ( w x ) o r s i n ( w x ) B 1 cos ⁡ ( w x ) + B 2 sin ⁡ ( w x ) 常见特解形式:\\ \begin{array}{c|c} f(x) & y \\ \hline C & B \\ x^p & B_1x^{p}+ B_2x^{p-1}+\cdots+ B_px+B_{p+1} \\ e^{ax} & Be^{ax} \\ cos(wx) or sin(wx) & B_1\cos (wx)+B_2\sin(wx) \end{array} f(x)Cxpeaxcos(wx)orsin(wx)yBB1xp+B2xp1++Bpx+Bp+1BeaxB1cos(wx)+B2sin(wx)

#微分算子法 D 求特解

微分算子法 D 求特解

#积分变换解微分方程

积分变换常用公式定理与方法

复变函数留数的计算与公式

在这里插入图片描述

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值