HyperNet: 走向特征融合,提高小物体检测精度

目录

1.背景:

2.结构图:

3.优点

4.加速策略:

5.产生优异效果:

6.轻量化方法:


1.背景: 

        卷积神经网络的特点是,深层的特征体现了强语义特征,有利于进行分类与识别,而浅层的特征分辨率高,有利于进行目标的定位。原始的Faster RCNN方法仅仅利用了单层的feature map(例如VGGNet的conv5-3),对于小尺度目标的检测较差,同时高IoU阈值时,边框定位的精度也不高。 在2016 CVPR上发表的HyperNet方法认为单独一个feature map层的特征不足以覆盖RoI的全部特性,因此提出了一个精心设计的网络结构,融合了浅、中、深3个层次的特征,取长补短,在处理好区域生成的同时,实现了较好的物体检测效果。

论文地址:

HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection (cv-foundation.org)

2.结构图:

image-20211216153310945

核心部分结构图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心之所向521

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值