目录
1.背景:
卷积神经网络的特点是,深层的特征体现了强语义特征,有利于进行分类与识别,而浅层的特征分辨率高,有利于进行目标的定位。原始的Faster RCNN方法仅仅利用了单层的feature map(例如VGGNet的conv5-3),对于小尺度目标的检测较差,同时高IoU阈值时,边框定位的精度也不高。 在2016 CVPR上发表的HyperNet方法认为单独一个feature map层的特征不足以覆盖RoI的全部特性,因此提出了一个精心设计的网络结构,融合了浅、中、深3个层次的特征,取长补短,在处理好区域生成的同时,实现了较好的物体检测效果。
论文地址:
HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection (cv-foundation.org)
2.结构图:

核心部分结构图:

最低0.47元/天 解锁文章
462

被折叠的 条评论
为什么被折叠?



