Python实现深度学习

在Python中实现深度学习,最常用的库是TensorFlow和PyTorch。以下是一个使用PyTorch的简单深度学习模型示例,用于图像分类任务(例如,MNIST手写数字识别)。

首先,确保你已经安装了PyTorch。你可以通过pip安装:

pip install torch torchvision

然后,你可以使用以下代码来创建一个简单的神经网络,训练它,并在测试集上进行评估:

import torch  
import torch.nn as nn  
import torch.optim as optim  
from torchvision import datasets, transforms  
  
# 定义超参数  
input_size = 784  # 28x28像素的图像  
hidden_size = 500  # 隐藏层的大小  
num_classes = 10  # 输出层的神经元数量(0-9的数字)  
num_epochs = 5  # 训练轮数  
batch_size = 100  # 批处理大小  
learning_rate = 0.001  # 学习率  
  
# 转换图像为Tensor并归一化  
transform = transforms.Compose([transforms.ToTensor(),  
                                transforms.Normalize((0.5,), (0.5,))])  
  
# 下载和加载MNIST训练集  
trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform)  
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True)  
  
# 下载和加载MNIST测试集  
testset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=False, transform=transform)  
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False)  
  
# 定义神经网络模型  
class Net(nn.Module):  
    def __init__(self, input_size, hidden_size, num_classes):  
        super(Net, self).__init__()  
        self.fc1 = nn.Linear(input_size, hidden_size)   
        self.relu = nn.ReLU()  
        self.fc2 = nn.Linear(hidden_size, num_classes)    
      
    def forward(self, x):  
        out = self.fc1(x)  
        out = self.relu(out)  
        out = self.fc2(out)  
        return out  
  
model = Net(input_size, hidden_size, num_classes)  
  
# 定义损失函数和优化器  
criterion = nn.CrossEntropyLoss()  
optimizer = optim.Adam(model.parameters(), lr=learning_rate)    
  
# 训练模型  
for epoch in range(num_epochs):  
    for i, (images, labels) in enumerate(trainloader, 0):  
        # 将图像数据展平  
        images = images.reshape(-1, 28*28)  
          
        # 前向传播  
        outputs = model(images)  
        loss = criterion(outputs, labels)  
          
        # 反向传播和优化  
        optimizer.zero_grad()  
        loss.backward()  
        optimizer.step()  
          
        if (i+1) % 100 == 0:  
            print (f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(trainloader)}], Loss: {loss.item():.4f}')  
  
# 测试模型  
correct = 0  
total = 0  
with torch.no_grad():  
    for images, labels in testloader:  
        images = images.reshape(-1, 28*28)  
        outputs = model(images)  
        _, predicted = torch.max(outputs.data, 1)  
        total += labels.size(0)  
        correct += (predicted == labels).sum().item()  
  
print(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')

这个代码首先定义了一个简单的全连接神经网络,然后在一个训练循环中训练这个网络。在每个训练步骤中,它都会进行前向传播以计算损失,然后进行反向传播以计算梯度,并最后更新网络的权重。训练完成后,代码会在测试集上评估模型的准确性。

  • 14
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
实现深度学习需要使用Python编程语言和相应的深度学习库,如TensorFlow、Keras、PyTorch等。以下是使用TensorFlow实现一个简单的神经网络模型的示例代码: ```python import tensorflow as tf # 加载数据集 (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # 数据预处理 x_train = x_train.reshape(-1, 28*28).astype('float32') / 255.0 x_test = x_test.reshape(-1, 28*28).astype('float32') / 255.0 y_train = tf.keras.utils.to_categorical(y_train, num_classes=10) y_test = tf.keras.utils.to_categorical(y_test, num_classes=10) # 定义模型 model = tf.keras.Sequential([ tf.keras.layers.Dense(units=128, activation='relu', input_shape=(784,)), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(units=10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test)) # 评估模型 loss, accuracy = model.evaluate(x_test, y_test) print('Test loss:', loss) print('Test accuracy:', accuracy) ``` 此代码用于加载MNIST数据集,对数据进行预处理,然后定义了一个包含两个全连接层的神经网络模型,使用adam优化器和交叉熵损失函数进行编译,最后对模型进行训练和评估。 使用Python实现深度学习需要具备一定的编程基础和数学知识,建议先学习Python编程和线性代数、微积分等数学基础知识。同时,可以参考相关的深度学习教程和文档,如TensorFlow官方文档、Keras官方文档等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孺子牛 for world

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值