电力电子技术(11)——变压器漏感对整流电路的影响、电容滤波

本文详细探讨了变压器漏感在整流电路中的作用,解释了换相重叠角的概念及其计算,并阐述了其对不同整流电路的影响,包括电压平均值的降低和换相压降的产生。此外,还介绍了电容滤波在不可控整流电路中的应用,特别是单相和三相桥式电路的工作原理和关键数量关系。分析表明,漏感和滤波电容能改变电路的工作状态,影响晶闸管的开通特性和输出电压质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

2.3 变压器漏感对整流电路的影响

换相重叠角的计算

变压器漏抗对各种整流电路的影响

2.4 电容滤波的不可控整流电路

2.4.1 电容滤波的单相不可控整流电路

1)工作原理及波形分析

2)主要的数量关系

感容滤波的二极管整流电路

2.4.2 电容滤波的三相不可控整流电路

1)基本原理

2)主要数量关系

3)二极管承受的电压


2.3 变压器漏感对整流电路的影响

考虑包括变压器漏感在内的交流侧电感的影响,该漏感可用一个集中的电感\large L_{B}表示。

以三相半波为例,然后将其结论推广。

考虑变压器漏感时的三相半波可控整流电路及波形

\large VT_{1}换相至\large VT_{2}的过程:

因a、b两相均有漏感,故\large i_{a}\large i_{b}均不能突变。于是\large VT_{1}\large VT_{2}同时导通,相当于将a、b两相短路,在两相组成的回路中产生环流\large i_{k}

\large i_{k}=i_{b}是逐渐增大的,而\large i_{a}=I_{d}-i_{k}是逐渐减小的。

\large i_{k}增大到等于\large I_{d}时,\large i_{a}=0\large VT_{1}关断,换流过程结束。

换相重叠角——换相过程持续的时间,用电角度\large \gamma表示。

换相过程中,整流电压\large u_{d}为同时导通的两个晶闸管所对应的两个相电压的平均值。

\large u_d = u_a+L_B\frac{di_k}{dt}=u_b-L_B\frac{di_k}{dt}=\frac{u_a+u_b}{2}

换相压降——与不考虑变压器漏感时相比,\large u_d平均值降低的多少。

\large \Delta U_d=\frac{1}{2\pi /3}\int_{\alpha +\frac{5\pi }{6}}^{\alpha +\gamma +\frac{5\pi }{6}}(u_b-u_d)d(\omega t)=\frac{3}{2\pi }\int_{\alpha +\frac{5\pi }{6}}^{\alpha +\gamma +\frac{5\pi }{6}}[u_b-(u_b-L_B\frac{di_k}{dt})]d(\omega t)=\frac{3}{2\pi }\int_{\alpha +\frac{5\pi }{6}}^{\alpha +\gamma +\frac{5\pi }{6}}L_B\frac{di_k}{dt}d(\omega t)=\frac{3}{2\pi }\int_{0}^{I_d}\omega L_Bdi_k=\frac{3}{2\pi }X_BI_d

换相重叠角的计算

\large \frac{di_k}{dt}=(u_b-u_a)/(2L_B)=\frac{\sqrt{6}U_2\sin (\omega t-\frac{5\pi }{6})}{2L_B}

由上式得:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

欲读万卷书,不入愚昧途

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值