学习的过程中最开始先着重学习聚类。
需要理解掌握的基本知识(可自行百度上面去搜索):
1.K-均值算法(k-means)
2.K邻近算法(KNN)
3.支撑向量机(SVM)
4.Linear Discriminative Analysis(LDA) https://www.camdemy.com/media/1582/
5.Priciple Component Analysis(PCA) https://www.camdemy.com/media/1559/
6.贝叶斯判别准则
线性代数:
wwwwwwwwwwwwww
1.基础学习:
(1)视频网址:
(B站也有)吴恩达机器学习视频教程:
吴恩达机器学习(网易云课堂)
(这个视频有一定深度的理论,开始看不懂很正常后面实践的过程中可以慢慢理解)
(2)矩阵和线性代数:
2.1.如何直观理解矩阵和线性代数:
https://www.zhihu.com/question/21082351?sort=created&page=1
(3)机器学习
3.1.机器学习知识点学习: https://blog.csdn.net/zouxy09/article/details/8102252
3.2.机器学习中的范数规则化之(一)L0、L1与L2范数: http://blog.csdn.net/zouxy09/article/details/24971995
3.3.机器学习中的范数规则化之(二)核范数与规则项参数选择: http://blog.csdn.net/zouxy09/article/details/24972869
(4)深度学习
4.1 zouxy09博客原创性博文导航(看深度学习:
二、Deep Learning 深度学习的系列内容): https://blog.csdn.net/zouxy09/article/details/14222605
- 论文阅读:
(1)重点阅读https://openaccess.thecvf.com/menu这里顶级会议的论文,点进去可以直接下载。
(2)中文论文查询(可以看别人的硕士和博士论文):www.cnki.net