神经网络part4——方差与偏差,正则化,dropout,数据扩增,early stopping,输入归一化,梯度爆炸和梯度消失

本文介绍了神经网络中防止过拟合的策略,包括正则化、dropout、数据扩增和early stopping。解释了偏差与方差的概念,以及它们如何影响模型性能。讨论了正则化的原理和实现,dropout的作用和实施方法,数据扩增的意义,以及何时使用early stopping。此外,提到了输入归一化在防止梯度爆炸和梯度消失中的作用。
摘要由CSDN通过智能技术生成

数据划分:
训练集:通过不同模型进行训练
验证集:选择训练误差最小的模型
测试集:进行无偏评估算法
普通数据时代:7:3
大数据时代,只需要一小部分作为验证,测试 1%,主要是训练集98%
最好让验证集合测试集们来自同一分布,会让学习效率更快

如果无测试集: 不进行无偏估计也可以接受

偏差:体现数据的拟合程度
方差:体现模型的泛化性能

train set error: 1% 15% 15% 0.5%
Dev set error: 11% 16% 30% 1%
过拟合 欠拟合 方差偏差很高 方差偏差很低
在这里插入图片描述
很理想的分类,绝大部分的样本点都得到了正确的划分。低方差低偏差

在这里插入图片描述
这个模型就对应高偏差,因为有较多的样本点被错误的划分,这种情况我们称模型“欠拟合”。

在这里插入图片描述
如果我们使用的一个非常复杂的模型,个模型存在高方差,因为如果我们加入一些新的样本点(例如下图中的a和b),模型将会很大概率将他们划分到错误的类别里,特别是位于分类边缘的一些样本,这种情况我们称为“过拟合”。

在这里插入图片描述

还有一种况,即高偏差高方差的情况,如图所示,高偏差是因为模型对训练样本点不能很好的拟合,有较多的样本点被错误划分;高方差是因为对中间两个样本点过度拟合。因此这是一个比较糟糕的分类器

偏差过高:选择新网络,比如隐藏层的数量和节点数量
方差过高:采用更多数据/正则化/更合适的网络框架/dropout

防止过拟合方法一:
正则化

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值