import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
x_data=torch.Tensor([[1.0],[2.0],[3.0]])
y_data=torch.Tensor([[0],[0],[1]])
#print(x_data.size())
class LogisticRegressionModel(torch.nn.Module):
def __init__(self):
super(LogisticRegressionModel,self).__init__()
self.linear=torch.nn.Linear(1,1)
def forward(self,x):
y_pred=F.sigmoid((self.linear(x)))
return y_pred
model=LogisticRegressionModel()
#之前用的MSE,现在用BCE二分类交叉熵
criterion=torch.nn.BCELoss(size_average=False)#求不求均值影响后面学习率的选择
optimizer=torch.optim.SGD(model.parameters(),lr=0.01)
for epoch in range(1000):
y_pred=model(x_data)
loss=criterion(y_pred,y_data)
print(epoch,loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
x=np.linspace(0,10,200)
x_t=torch.Tensor(x).view((200,1))
y_t=model(x_t)
y=y_t.data.numpy()
plt.plot(x,y)
plt.plot([0,10],[0.5,0.5],c='r')
plt.xlabel('Hours')
plt.ylabel('Probaility of Pass')
plt.grid()#设置网格线
plt.show()
【Pytorch深度学习实践】刘二大人6 Logistics Regression
最新推荐文章于 2024-11-06 20:38:13 发布