嵌入式AI---如何用C++实现YOLO的NMS(非极大值抑制)算法


前言

YOLO系列的目标检测算法在边缘部署方面展现出了强大的性能和广泛的应用潜力。大部分业务场景是利用PyTorch在服务器端完成检测模型的训练,得到相应的.pt、.onnx检测模型文件。随后,对模型计算量和硬件成本进行综合考量,完成边缘计算设备选型。最后,根据不同的硬件设备,将.pt或onnx模型文件转化成适配对应硬件平台的模型文件再进行推理(如瑞芯微的rknn格式、昇腾的om格式)。
目前网上大多数资料用的是YOLOV5官方源码提供的Python推理版本,然而实际业务场景往往需要基于C++在板子上完成模型推理。这就涉及到了一些模型输入预处理,输出后处理的问题,本文将简单介绍如何利用C++实现YOLOV5的后处理NMS算法。


一、为什么需要NMS算法?

先不思考什么是NMS,先思考为什么需要引入这个算法:
以YOLOV5为例,假设YOLOV5的输入图像大小为320x320x3,那么输出特征图的大小就为40x40、20x20、10x10。输出特征图的每个点都铺设了3个锚框,故最终有(40x40+20x20+10x10)x3个预测框。实际业务场景不可能有这么多的预测目标,我们需要先基于每个框的置信度筛除一批无效预测框(这一步还不是NMS,只是基于置信度进行筛除,因为大多数框都是无效框,利用置信度可以筛除90%以上的预测框)。
在这里插入图片描述
筛除了一批预测框后,由于目标附近可能会有多个预测框的置信度较高(也就是有多个预测框同时选中了目标),因此我们需要从中选取一个作为结果输出,这就需要引入一种滤除算法消除其它预测框,YOLO中用的就是NMS。

二、什么是NMS算法?

非极大值抑制(NMS),如名字所示,目的在于抑制非极大值的预测框。那么什么是极大值呢,其实就是局部区域内可信度得分最高的预测框。NMS算法的作用就是抑制局部区域内得分较低的预测框,最后保留那个极大值预测框。
对于目标检测场景,为了解决同一个目标被多个锚框选中的问题,我们引入了非极大值抑制算法(NMS),局部区域内只保留一个得分最高的目标框。

三、如何使用C++编写一个NMS算法

1、预测框定义

typedef struct Box{
    float x;	//预测框左上角坐标x
    float y;	//预测框左上角坐标y
    float w;	//框宽
    float h;	//框高
    float score;  //得分
}Box;

假设预测框的结构体定义如上所示,Box结构体中包含了预测框的位置、大小以及该框的得分。注意(需提前处理YOLO的输出内容,将输出内容都转化为Box结构体变量,此处省略该代码)

2、滤除重叠框

NMS算法的思路如下:
(1)将所有预测框按照得分从高到低进行排序,得到一个有序的预测框列表。
(2)开始遍历列表,计算当前预测框与后续预测框的IOU值,将那些IOU值大于预设阈值的预测框移除。
(3)完成上述步骤后,继续遍历候选框列表中的下一个预测框,重复执行上述计算IOU和剔除高重叠预测框的过程,直到候选框列表中的所有预测框都被遍历完毕。

因此,我们需要先对预测框进行排序,假设预测框全都存放在vector类对象boxVec中,那么我们需要对boxVec内的全部预测框进行排序。

bool compare(Box b1, Box b2)
{
	return b1.score>b2.score? true:false;
}
vector<Box> boxVec;
sort(boxVec.begin(), boxVec.end(), compare);

随后编写一个计算两个预测框IOU的函数:

float IOU(Box b1, Box b2)
{  
    float x1 = max(b1.x, b2.x); 	//重叠框的四个坐标
    float x2 = min(b1.x + b1.w, b2.x + b2.w); 
    float y1 = max(b1.y, b2.y);
    float y2 = min(b1.y + b1.h, b2.y + b2.h);
  
    float overlap_area = max(0.0f, x2 - x1) * max(0.0f, y2 - y1); //重叠区域大小  
    if (overlap_area == 0) return 0.0f; // 如果没有重叠,IoU为0  
  
    float union_area = b1.w * b1.h + b2.w * b2.h - overlap_area; //联合区域大小
  
    // 使用更常见的分母  
    float iou = overlap_area / union_area ;  
    return iou;  
}  

在这里插入图片描述

最后,利用排序好的boxVec和IOU函数完成无效框滤除:

size_t i = 0;  
float nms_ratio = 0.5;  
while(i < boxVec.size())  
{  
    size_t j = i + 1;  
    while(j < boxVec.size())  
    {  
        if(IOU(boxVec[i], boxVec[j]) > nms_ratio)  
        {  
            // 删除元素,并且不增加 j 的值  
            boxVec.erase(boxVec.begin() + j);  
        }  
        else  
        {  
            // 如果没有删除元素,则增加 j  
            j++;  
        }  
    }  
    i++;  
}

至此,boxVec中重叠的预测框就被滤除了。


总结

本文基于C++编写了一个简化版的NMS代码,简单介绍了相关的设计思路,实际使用可能仍需优化或存在疏漏,具体需根据业务需求动态调整代码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值