LM算法推导


前言

LM在非线性优化中有着广泛的应用,CSDN中有很多写好的代码但是相关的公式推导却很少,所以我就把公式推导整理了一下。


一、公式推导

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

LM算法是Levenberg-Marquardt算法的简称,它是一种用于非线性最小二乘问题的优化算法。如果你想在Matlab中实现LM算法,你可以参考以下步骤: 1. 首先,你可以使用Cholesky分解来求解对称正定矩阵Ax=b的方程。你可以使用下面的Matlab代码实现Cholesky分解: ```matlab function \[x,L\]=cholesky(A,b) \[m,n\]=size(A); if m~=n fprintf('Matrix is not a square matrix'); return; end for k=1:n A(k,k)=sqrt(A(k,k)); A(k+1:n,k)=A(k+1:n,k)/A(k,k); for j=k+1:n A(j:n,j)=A(j:n,j)-A(j:n,k)*A(j,k); end end L = tril(A); ``` 2. 接下来,你可以使用LM算法来优化非线性最小二乘问题。你可以参考一些相关的理论和推导,例如在K. Madsen等人的《Methods for non-linear least squares problems》文章中。你可以在这篇文章的原文链接中找到更多详细的信息:\[3\] 请注意,这里只提供了一个简单的实现示例,你可能需要根据你的具体问题进行适当的修改和调整。希望这些信息对你有帮助! #### 引用[.reference_title] - *1* *3* [LM优化算法的Matlab实现](https://blog.csdn.net/lingyunxianhe/article/details/80469984)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [LM(Levenberg-Marquadrdt )算法在MATLAB中的实现及实例](https://blog.csdn.net/waitingwinter/article/details/106142276)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值