从Gauss-Newton算法到 LM算法 (详细推导及MATLAB实现、多自变量问题)


一、结果回顾

Gauss-Newton算法(高斯牛顿法)用来估计参数,Gauss-Newton算法学习对Gauss-newton算法做了详细的解释,并且使用C++实现,写得很不错。

但是程序其实有微小错误,实际的坐标并不是年代1815-1885,而是1~8,否则 p = A e B t p = Ae^{Bt} p=AeBt拟合时将会迅速增大,也得不到 A = 0.7 A=0.7 A=0.7 B = 0.26 B=0.26 B=0.26 这一结果。 个人觉得原文对程序实现的解释也稍有不足,本文将使用 MATLAB,给出详细实现步骤。

A = 0.7 , B = 0.26 ; t = 1 − 8 , y = A e B t A = 0.7,B=0.26;t = 1-8,y = Ae^{Bt} A=0.7B=0.26t=18y=AeBt绘图如下(星号为原始数据点,实现为拟合点)


二、Gauss-Newton算法

以下详细说明各个矩阵如何获取,逐步给出计算结果。

2.1 原始数据
时间刻度 t t t12345678
人口数 y y y8.311.014.719.726.735.244.455.9
2.2 数学模型

现需要使用指数模型拟合人口数 p 关于时间刻度 t 的变化。

数学模型为:
y ^ = x 1 e x 2 t (2.1) \hat {y} = x_1 e^{x_2 t} \tag{2.1} y^=x1ex2t(2.1)

现在需要求解合适的参数 x = [ x 1 , x 2 ] x=[x_1, x_2] x=[x1,x2],使得有:
min ⁡ f ( x ) = 1 2 ∑ i = 1 8 r i 2 ( x ) (2.2) \min f(x)=\frac{1}{2} \sum_{i=1}^8 r_i^2(x) \tag{2.2} minf(x)=21i=18ri2(x)(2.2)

r i ( x ) = y i ^ − y i (2.3) r_i(x) = \hat {y_i} - y_i \tag{2.3} ri(x)=yi^yi(2.3)

2.3 算法流程

接下来给出 x = [ x 1 , x 2 ] T x=[x_1, x_2]^T x=[x1,x2]T 的迭代过程,也即Gauss-Newton算法流程:
1)给定初始点 x 0 x_0 x0,允许误差 ϵ > 0 \epsilon>0 ϵ>0,置 k = 0 k=0 k=0
2) f ′ ( x ( k ) ) < ϵ f'(x^{(k)}) < \epsilon f(x(k))<ϵ,导数接近0即在极小点附近,得到 x x x,算法结束,否则继续;
3)计算 x ( k + 1 ) x^{(k+1)} x(k+1) x ( k + 1 ) = x k − H − 1 x^{(k+1)}=x^{k}-H^{-1} x(k+1)=xkH1 ▽ \bigtriangledown f f f

2.4 梯度和黑森矩阵

根据定义,可得梯度和黑森矩阵如下:

原函数:

f ( x 1 , x 2 ) = 1 2 ∑ i = 1 8 r i 2 ( x 1 , x 2 ) (2.4) f(x_1, x_2) = \frac{1}{2} \sum_{i=1}^8 r_i^2(x_1, x_2) \tag{2.4} f(x1,x2)=21i=18ri2(x1,x2)(2.4)

梯度:
▽ f = [ ∂ f ∂ x 1 ∂ f ∂ x 2 ] T = ∑ i = 1 8 [ r i ∂ r i ∂ x 1 r i ∂ r i ∂ x 2 ] T (2.5) \bigtriangledown f= \left [ \frac {\partial f} {\partial x_1}\quad \frac {\partial f} {\partial x_2} \right ]^T = \sum_{i=1}^8 \left [ r_i \frac {\partial r_i} {\partial x_1} \quad r_i \frac {\partial r_i} {\partial x_2} \right ]^T \tag{2.5} f=[x1fx2f]T=i=18[rix1ririx2ri]T(2.5)

黑森矩阵:

H = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 x 2 ∂ 2 f ∂ x 2 x 1 ∂ 2 f ∂ x 2 2 ] ≈ ∑ i = 1 8 [ ∂ r i ∂ x 1 ∂ r i ∂ x 1 ∂ r i ∂ x 1 ∂ r i ∂ x 2 ∂ r i ∂ x 2 ∂ r i ∂ x 1 ∂ r i ∂ x 2 ∂ r i ∂ x 2 ] (2.6) H = \left [ \begin {array}{cc} \displaystyle \frac {\partial^2f} {\partial x_1^2} & \displaystyle \frac {\partial^2f} {\partial x_1x_2}\\ \displaystyle \frac {\partial ^2f} {\partial x_2x_1} & \displaystyle \frac {\partial ^2f} {\partial x_2^2} \end {array} \right ] \approx \sum_{i=1}^8 \left [ \begin{array}{cc} \displaystyle \frac {\partial r_i}{\partial x_1} \displaystyle \frac {\partial r_i}{\partial x_1} & \displaystyle \frac {\partial r_i}{\partial x_1} \displaystyle \frac {\partial r_i}{\partial x_2} \\ \displaystyle \frac {\partial r_i}{\partial x_2} \displaystyle \frac {\partial r_i}{\partial x_1} & \displaystyle \frac {\partial r_i}{\partial x_2} \displaystyle \frac {\partial r_i}{\partial x_2} \end {array} \right ] \tag{2.6} H=x122fx2x12fx1x22fx222fi=18x1rix1rix2rix1rix1rix2rix2rix2ri(2.6)

现在只剩下 r r r 关于 x 1 、 x 2 x_1、x_2 x1x2 的偏导,由 r r r 的定义,容易直接根据求导法则得出 r r r 关于 x 1 、 x 2 x_1、 x_2 x1x2 的偏导(也可使用数值微分,见第2.5小节),如下:

2.5 MATLAB 程序

进行运算时,C++程序需要逐个数据读取,而MATLAB擅长矩阵运算。矩阵运算一方面使得效率提高,运算简洁,但一定程度上也对运算表达能力有更高要求。

%原始数据
t = 1:8;
popu = [8.3 11.0 14.7 19.7 26.7 35.2 44.4 55.9];

%高斯牛顿法
A = 1.0;                    %待求变量1
B = 1.0;                    %待求变量2
k = 0;                      %迭代次数
eps = 1e-3;                 %允许误差
r = A*exp(B*t) - popu;      %误差
r1 = zeros(size(r));        %记录上一次误差

while(1)
    if (sum(abs(r1-r)) < eps) || (k >100)
        A 
        B
        k
        break
    else
        pA = exp(B*t);                      %关于A的偏导数
        pB = A*exp(B*t).*t;                 %关于B的偏导数
        H = [2*sum(pA.*pA) 2*sum(pA.*pB)    
             2*sum(pA.*pB) 2*sum(pB.*pB)];  %黑森矩阵
        df = [sum(r.*pA)  
              sum(r.*pB)];                %梯度
          
        k = k + 1;
        delta = inv(H) * df;                %变化量
        A = A - delta(1);                   %更新待求参数A
        B = B - delta(2);                   %更新待求参数B
        
        r1 = r;                             %记录上一次误差
        r = A*exp(B*t) - popu;              %更新误差
    end
end

运行结果为

A = 7.0001
B = 0.2621
k = 25

因此迭代13次达到满足条件,也与文章最开始的结果一致。

2.6 微分的数值运算

在很多实际问题中,往往需要计算微分、偏微分等,本例就运用了偏微分。但是并不是所有的数学模型都像本例这样能够给出微分的解析式,很多时候需要数值运算。
回到第一次接触导数时,导数的定义为

f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x − Δ x ) 2 Δ x f'(x)=\lim\limits_{\Delta x \to 0} \frac {f(x+\Delta x) - f(x-\Delta x)} {2 \Delta x} f(x)=Δx0lim2Δxf(x+Δx)f(xΔx)

这里两边都取 Δ \Delta Δ x x x,有助于提高精度,偏微分与之类似。
本例中

r i = x 1 e x 2 t i − y i r_i = x_1 e^{x_2 t_i} - y_i ri=x1ex2tiyi

偏导即为:

∂ r i ∂ x 1 = r ( x 1 + Δ x 1 , x 2 ) − r ( x 1 − Δ x 1 , x 2 ) 2 Δ x 1 = ( x 1 + Δ x 1 ) e x 2 t i − ( x 1 − Δ x 1 ) e x 2 t i 2 Δ x 1 \frac {\partial r_i}{\partial x_1} = \frac {r(x_1+\Delta x_1, x_2) - r(x_1-\Delta x_1, x_2)} {2\Delta x_1} = \frac { (x_1+\Delta x_1)e^{x_2t_i} - (x_1-\Delta x_1) e^{x_2t_i}} {2\Delta x_1} x1ri=2Δx1r(x1+Δx1,x2)r(x1Δx1,x2)=2Δx1(x1+Δx1)ex2ti(x1Δx1)ex2ti

∂ r i ∂ x 2 = r ( x 1 , x 2 + Δ x 2 ) − r ( x 1 , x 2 − Δ x 2 ) 2 Δ x 2 = x 1 e ( x 2 + Δ x 2 ) t i − x 1 e ( x 2 − Δ x 2 ) t i 2 Δ x 2 \frac {\partial r_i}{\partial x_2} = \frac {r(x_1, x_2 + \Delta x_2) - r(x_1, x_2-\Delta x_2)} {2\Delta x_2} = \frac {x_1 e^{(x_2 + \Delta x_2) t_i} - x_1 e^{(x_2 - \Delta x_2)t_i}} {2\Delta x_2} x2ri=2Δx2r(x1,x2+Δx2)r(x1,x2Δx2)=2Δx2x1e(x2+Δx2)tix1e(x2Δx2)ti

再取 Δ x 1 = Δ x 2 = 0.0001 \Delta x_1 = \Delta x_2 =0.0001 Δx1=Δx2=0.0001 例如,一个很小的值,我们就能够得出关于 x 1 、 x 2 x_1、x_2 x1x2的偏导数。值得注意的是,我们其实也没必要过多地化简,因为很多时候是很复杂的,例如此时 x 2 x_2 x2 的偏导数就比较难化简,何不充分发挥计算机的计算能力呢?

修改程序如下,程序中使用 A A A 代替 x 1 x_1 x1 B B B 代替 x 2 x_2 x2

%原始数据
t = 1:8;
popu = [8.3 11.0 14.7 19.7 26.7 35.2 44.4 55.9];

%高斯牛顿法
A = 1.0;                    %待求变量1
B = 1.0;                    %待求变量2
k = 0;                      %迭代次数
eps = 1e-3;                 %允许误差
r = A*exp(B*t) - popu;      %误差
r1 = zeros(size(r));        %记录上一次误差
dA = 1e-4;                  %求导时变化率
dB = 1e-4;                  %求导时变化率
while(1)
    if (sum(abs(r1-r)) < eps) || (k >100)
        A 
        B
        k
        break
    else
        pA = (((A+dA)*exp(B*t)) - (A-dA)*exp(B*t)) / (2*dA);%关于A的偏导数
        pB = (A*exp((B+dB)*t) - A*exp((B-dB)*t)) / (2*dB) ; %关于B的偏导数
        
        H = [2*sum(pA.*pA) 2*sum(pA.*pB)    
             2*sum(pA.*pB) 2*sum(pB.*pB)];  %黑森矩阵
        df = [sum(r.*pA)  
              sum(r.*pB)];                %梯度
          
        k = k + 1;
        delta = inv(H) * df;                %变化量
        A = A - delta(1);                   %更新待求参数A
        B = B - delta(2);                   %更新待求参数B
        
        r1 = r;                             %记录上一次误差
        r = A*exp(B*t) - popu;              %更新误差
    end
end

代码主要修改了pA,pB的计算方式,结果跟上面一致

A = 7.0001
B = 0.2621
k = 25

三、LM算法

3.1 算法原理

LM算法结合高斯牛顿法和梯度下降法,虽然听起来很复杂的样子,实际上很简单,就是在高斯牛顿法的基础上添加一个梯度下降因子,算法如下:

1)给定初始点 x 0 x_0 x0,允许误差 ϵ > 0 \epsilon>0 ϵ>0,置 k = 0 k=0 k=0
2) f ′ ( x ( k ) ) < ϵ f'(x^{(k)}) < \epsilon f(x(k))<ϵ,导数接近0即在极小点附近,得到 x x x,算法结束,否则继续;
3)计算 x ( k + 1 ) x^{(k+1)} x(k+1) x ( k + 1 ) = x k − ( H + x^{(k+1)}=x^{k}-(H+ x(k+1)=xk(H+ α \alpha α I ) − 1 I)^{-1} I)1 ▽ \bigtriangledown f f f (高斯牛顿法为 x ( k + 1 ) = x k − H − 1 x^{(k+1)}=x^{k}-H^{-1} x(k+1)=xkH1 ▽ \bigtriangledown f f f

3.2 MATLAB程序
% 原始数据
t = 1:8;
popu = [8.3 11.0 14.7 19.7 26.7 35.2 44.4 55.9];

% LM法
A = 1.0;                    %待求变量1
B = 1.0;                    %待求变量2
k = 0;                      %迭代次数
eps = 1e-3;                 %允许误差
r = A*exp(B*t) - popu;      %误差
r1 = zeros(size(r));        %记录上一次误差
dA = 1e-4;                  %求导时变化率
dB = 1e-4;                  %求导时变化率
alpha = 10;					%LM法梯度下降因子 =====此行添加=====
while(1)
    if (sum(abs(r1-r)) < eps) || (k >100)
        A 
        B
        k
        break
    else
        pA = (((A+dA)*exp(B*t)) - (A-dA)*exp(B*t)) / (2*dA);%关于A的偏导数
        pB = (A*exp((B+dB)*t) - A*exp((B-dB)*t)) / (2*dB) ; %关于B的偏导数
        
        H = [2*sum(pA.*pA) 2*sum(pA.*pB)    
             2*sum(pA.*pB) 2*sum(pB.*pB)];  %黑森矩阵
        df = [sum(r.*pA)  
              sum(r.*pB)];                 	%梯度
          
        k = k + 1;
        delta = (inv(H + alpha*eye(2))) * df;	%变化量 =====此行修改=====
        A = A - delta(1);                   %更新待求参数A
        B = B - delta(2);                   %更新待求参数B
        
        r1 = r;                             %记录上一次误差
        r = A*exp(B*t) - popu;              %更新误差
    end
end
A = 6.9999
B = 0.2621
k = 33									

结果基本一致,但比高斯牛顿法还多运行了几代。


四、多变量问题

先说明一下,多变量时结果并不如预期所想,存在一些问题!

由于其他博友问到多自变量时怎么办这个问题,思考后觉得可行,做此补充。方便起见,直接把上面的时间换成两个吧:

时间刻度 t 1 t_1 t112345678
时间刻度 t 2 t_2 t21.11.21.31.41.51.61.71.8
人口数 y y y8.311.014.719.726.735.244.455.9

数学模型为:
y ^ = x 1 e x 2 t 1 + x 3 e x 4 t 2 \hat {y} = x_1 e^{x_2 t_1} + x_3e^{x_4 t_2} y^=x1ex2t1+x3ex4t2

现在需要求解合适的参数 x = [ x 1 , x 2 , x 3 , x 4 ] x=[x_1, x_2, x_3, x_4] x=[x1,x2,x3,x4],使得有:
min ⁡ f ( x ) = 1 2 ∑ i = 1 8 r i 2 ( x ) r i ( x ) = y i ^ − y i \min f(x)=\frac{1}{2} \sum_{i=1}^8 r_i^2(x) \\ r_i(x) = \hat {y_i} - y_i minf(x)=21i=18ri2(x)ri(x)=yi^yi

由于梯度和雅可比矩阵都使用一阶偏导即可计算,因此需要分别计算: ∂ y ^ ∂ x 1 \displaystyle \frac {\partial \hat y}{\partial x_1} x1y^ ∂ y ^ ∂ x 2 \displaystyle \frac {\partial \hat y}{\partial x_2} x2y^ ∂ y ^ ∂ x 3 \displaystyle \frac {\partial \hat y}{\partial x_3} x3y^ ∂ y ^ ∂ x 4 \displaystyle \frac {\partial \hat y}{\partial x_4} x4y^ 。此处导数可以直接运用公式计算,也可利用数值方式计算,程序将采用数值方式计算。

类比式(2.5),梯度为:

▽ f = [ ∂ f ∂ x 1 ∂ f ∂ x 2 ∂ f ∂ x 3 ∂ f ∂ x 4 ] T = ∑ i = 1 8 [ r i ∂ r i ∂ x 1 r i ∂ r i ∂ x 2 r i ∂ r i ∂ x 3 r i ∂ r i ∂ x 4 ] T (4.1) \bigtriangledown f= \left [ \frac {\partial f} {\partial x_1}\quad \frac {\partial f} {\partial x_2} \quad \frac {\partial f} {\partial x_3} \quad \frac {\partial f} {\partial x_4} \right]^T = \sum_{i=1}^8 \left [ r_i \frac {\partial r_i} {\partial x_1} \quad r_i \frac {\partial r_i} {\partial x_2} \quad r_i \frac {\partial r_i} {\partial x_3} \quad r_i \frac {\partial r_i} {\partial x_4}\right ]^T \tag{4.1} f=[x1fx2fx3fx4f]T=i=18[rix1ririx2ririx3ririx4ri]T(4.1)

类比式(2.6),黑森矩阵为:

H = [ ∂ 2 f x 1 2 ⋯ ∂ 2 f ∂ x 1 x 4 ⋮ ⋱ ⋮ ∂ 2 f x 4 x 1 ⋯ ∂ 2 f ∂ x 4 2 ] ≈ ∑ i = 1 8 [ ∂ r i ∂ x 1 ∂ r i ∂ x 1 ⋯ ∂ r i ∂ x 1 ∂ r i ∂ x 4 ⋮ ⋱ ⋮ ∂ r i ∂ x 4 ⋯ ∂ r i ∂ x 4 ∂ r i ∂ x 4 ] (2.6) H = \left [ \begin {array}{ccc} \displaystyle \frac {\partial^2f} {x_1^2}& \cdots &\displaystyle \frac {\partial^2f} {\partial x_1x_4}\\ \vdots & \ddots & \vdots \\ \displaystyle \frac {\partial^2f} {x_4x_1}& \cdots &\displaystyle \frac {\partial^2f} {\partial x_4^2} \end {array} \right ] \approx \sum_{i=1}^8 \left [ \begin{array}{ccc} \displaystyle \frac {\partial r_i}{\partial x_1} \frac {\partial r_i}{\partial x_1} & \cdots & \displaystyle \frac {\partial r_i}{\partial x_1} \frac {\partial r_i}{\partial x_4} \\ \vdots & \ddots & \vdots \\ \displaystyle \frac {\partial r_i}{\partial x_4} & \cdots & \displaystyle \frac {\partial r_i}{\partial x_4} \displaystyle \frac {\partial r_i}{\partial x_4} \end {array} \right ] \tag{2.6} H=x122fx4x12fx1x42fx422fi=18x1rix1rix4rix1rix4rix4rix4ri(2.6)

公式有了,写程序,程序中使用 A , B , C , D A, B, C, D A,B,C,D 代替 x 1 , x 2 , x 3 , x 4 x_1, x_2, x_3, x_4 x1,x2,x3,x4

%原始数据
t1 = 1:8;
t2 = 1.1:0.1:1.8;
popu = [8.3 11.0 14.7 19.7 26.7 35.2 44.4 55.9];

%高斯牛顿法
A = 1.0;                    %待求变量1
B = 1.0;                    %待求变量2
C = 1.0;
D = 1.0;

k = 0;                      %迭代次数
eps = 1e-3;                 %允许误差(相比之前,降低了一个数量级精度)
r = A*exp(B*t1)+ C*exp(D*t2) - popu;      %误差
r1 = zeros(size(r));        %记录上一次误差
dA = 1e-4;                  %求导时变化率
dB = 1e-4;                  %求导时变化率
dC = 1e-4;
dD = 1e-4;

alpha = 5;                 % 梯度下降因子

while(1)
    if (sum(abs(r1-r)) < eps) || (k >50)
        A 
        B
        C
        D
        k
        break
    else
        % 计算偏导
        pA = (((A+dA)*exp(B*t1)) - (A-dA)*exp(B*t1)) / (2*dA);%关于A的偏导数
        pB = (A*exp((B+dB)*t1) - A*exp((B-dB)*t1)) / (2*dB) ; %关于B的偏导数
        pC = (((C+dC)*exp(D*t2)) - (C-dC)*exp(D*t2)) / (2*dC);%关于C的偏导数
        pD = (C*exp((D+dD)*t2) - C*exp((D-dD)*t2)) / (2*dD) ; %关于D的偏导数
        
        % 黑森矩阵
        H = [2*sum(pA.*pA) 2*sum(pA.*pB) 2*sum(pA.*pC)  2*sum(pA.*pD)   
             2*sum(pB.*pA) 2*sum(pB.*pB) 2*sum(pB.*pC)  2*sum(pB.*pD)
             2*sum(pC.*pA) 2*sum(pC.*pB) 2*sum(pC.*pC)  2*sum(pC.*pD)
             2*sum(pD.*pA) 2*sum(pD.*pB) 2*sum(pD.*pC)  2*sum(pD.*pD)];  
         
        % 梯度
        df = [sum(r.*pA)  
              sum(r.*pB)
              sum(r.*pC)
              sum(r.*pD)];                
          
        k = k + 1;
        delta =  (inv(H + alpha*eye(4))) * df;                %变化量
        A = A - delta(1);                   %更新待求参数A
        B = B - delta(2);                   %更新待求参数B
        C = C - delta(3);
        D = D - delta(4);
        
        r1 = r;                             %记录上一次误差
        r = A*exp(B*t1)+ C*exp(D*t2) - popu;              %更新误差
    end
end

结果如下:

A = -0.2168
B = 0.5926
C = 0.2473
D = 3.2152
k = 51

注意,不使用LM算法只使用Gauss-Newton法会出现矩阵奇异的问题,难以继续。


总结

本文在Gauss-Newton算法学习的基础上给出具体公式及推导,使用 MATLAB 详细地实现Gauss-Newton算法和LM算法,并给出数值计算偏导数方法。

  • 51
    点赞
  • 281
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 25
    评论
Gauss-Newton算法是一种非线性最小二乘问题的优化算法,可以用于拟合非线性模型。在Matlab中,可以使用以下步骤编写Gauss-Newton算法: 1. 定义非线性模型。例如,假设我们要拟合一个二次函数模型y=ax^2+bx+c,可以定义一个函数: function [y] = myfun(x,coeffs) y = coeffs(1)*x.^2 + coeffs(2)*x + coeffs(3); end 其中,x是自变量,coeffs是模型参数。 2. 定义观测数据。例如,我们有10个数据点,可以定义一个向量: x = linspace(0, 1, 10); % 自变量 y_data = 2*x.^2 + 0.5*x + 1 + 0.1*randn(1,10); % 观测数据 其中,y_data是带有噪声的观测数据。 3. 定义Gauss-Newton算法。可以使用以下代码: function [coeffs] = gauss_newton(x, y_data, coeffs_0) max_iter = 100; % 最大迭代次数 tol = 1e-6; % 收敛条件 coeffs = coeffs_0; for i = 1:max_iter % 计算残差 r = y_data - myfun(x, coeffs); % 计算雅可比矩阵 J = [x.^2, x, ones(size(x))]; % 计算增量 delta = (J'*J)\(J'*r'); % 更新参数 coeffs = coeffs + delta'; % 判断收敛 if norm(delta) < tol break end end end 其中,coeffs_0是初始参数值。 4. 调用Gauss-Newton算法并输出结果。可以使用以下代码: coeffs_0 = [1, 1, 1]; % 初始参数值 coeffs = gauss_newton(x, y_data, coeffs_0); % 调用Gauss-Newton算法 y_fit = myfun(x, coeffs); % 计算拟合结果 plot(x, y_data, 'o', x, y_fit, '-') % 绘制观测数据和拟合结果 注意,Gauss-Newton算法可能会陷入局部最优解,因此需要多次运行算法以获得更好的结果。
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大强强小强强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值