机器学习中的梯度检验(Grad check)

本文详细介绍了深度学习中梯度检验的概念和重要性。通过数值逼近方法检查梯度的正确性,确保反向传播过程的准确性。梯度检验步骤包括将网络权重组合成大向量,进行数值梯度计算并与理论梯度比较。若两者欧式距离小,则通过检验。注意事项包括避免在训练中使用,用于debug,注意正则化项,不与dropout结合。当发现梯度问题时,应及时定位并修复代码。
摘要由CSDN通过智能技术生成

梯度的数值逼近

在这里插入图片描述

大O表示法-表示逼近误差

用双边误差检验应该比单边误差检验更加合理,计算出的值更加接近导数的真实值

梯度检验(Grad check)

在这里插入图片描述
在这里插入图片描述

梯度检验的步骤:

  1. 首先将每一层的w,b进行连接和组合来组成一个巨大的向量,所以这时J的参数就只有一个大θ

  2. 然后用for遍历大θ对大θ中的每一个θ做梯度数值逼近计算,最终得到一个向量dθapprox (这里应该可以使用numpy进行向量化计算,不用for循环遍历

  3. 然后用欧式距离衡量向量dθapprox与向量dθ的相似性,如果计算出欧式距离处于一个较小的值

    那么我们的梯度检验就获得了成功,如果没有,就说明在反向传播的过程中某一个导数的计算出现了问题

    这时就需要我们去debug

使用梯度检验的注意事项:

在这里插入图片描述

  1. 不要将其用到训练过程中 只是用来debug
  2. 检验出来反向传播梯度计算有问题后,就应该查看源代码定位问题
  3. 记住cost function的正则化项
  4. 不要和dropput(随机失活)方法一起使用
  5. 一般来说其会在经过一些训练后使用或者随机初始化后也可以用于检验一下
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值