两类常用函数项级数

幂级数

相关概念

  • 形如 ∑ n = 1 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . \sum_{n=1}^\infty a_nx^n=a_0+a_1x+a_2x^2+...+a_nx^n+... n=1anxn=a0+a1x+a2x2+...+anxn+...
    ∑ n = 1 ∞ a n ( x − x 0 ) n = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + . . . + a n ( x − x 0 ) n + . . . \sum_{n=1}^\infty a_n(x-x_0)^n=a_0+a_1(x-x_0)+a_2(x-x_0)^2+...+a_n(x-x_0)^n+... n=1an(xx0)n=a0+a1(xx0)+a2(xx0)2+...+an(xx0)n+...的函数项级数,称为幂级数. 其中, a 0 , x 0 a_0,x_0 a0,x0都是常数项.
  • 当级数在 ∣ x ∣ < R |x|<R x<R时收敛, R称为收敛半径, 对应的开区间收敛区间.
  • a n = f ( n ) ( x 0 ) n ! , n = 1 , 2 , 3... a_n=\frac{f^{(n)}(x_0)}{n!}, n=1,2,3... an=n!f(n)(x0),n=1,2,3...所确定的幂级数
    f ( x ) = ∑ n = 0 ∞ a n ( x − x 0 ) n f(x)=\sum_{n=0}^\infty a_n(x-x_0)^n f(x)=n=0an(xx0)n称为 f f f x 0 x_0 x0处的Taylor级数.

相关性质

  • Abel定理: 对于幂级数 ∑ n = 1 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . \sum_{n=1}^\infty a_nx^n=a_0+a_1x+a_2x^2+...+a_nx^n+... n=1anxn=a0+a1x+a2x2+...+anxn+...下列命题成立
    (1) 若他在点 x 0 ! = 0 x_0!=0 x0!=0处收敛,则当 ∣ x ∣ < ∣ x 0 ∣ |x|<|x_0| x<x0时, 级数绝对收敛.
    (2)若它再点 x ~ 0 ! = 0 \widetilde x_0!=0 x 0!=0处发散, 则当 ∣ x ∣ > ∣ x ~ 0 ∣ |x|>|\widetilde x_0| x>x 0时, 级数发散.
  • 幂级数的收敛性只有三种情况:
    (1). 在R上收敛, 且绝对收敛.
    (2). 仅在 x = 0 x=0 x=0时收敛.
    (3). 存在一个正数R, 当 ∣ x ∣ < R |x|<R x<R时绝对收敛, 当 ∣ x ∣ > R |x|>R x>R时发散.
  • 设有幂级数 ∑ n = 1 ∞ a n x n \sum_{n=1}^\infty a_n x^n n=1anxn,若 a n ! = 0 a_n!=0 an!=0, 则 lim ⁡ n → ∞ a n a n + 1 \lim_{n\to \infty}\frac{a_n}{a_{n+1}} limnan+1an为该幂级数的收敛半径.
  • 设有幂级数 ∑ n = 1 ∞ a n x n \sum_{n=1}^\infty a_n x^n n=1anxn,若 a n ! = 0 a_n!=0 an!=0, 则 l i m n → ∞ 1 ∣ a n ∣ lim_{n\to\infty}\frac{1}{\sqrt{|a_n|}} limnan 1为其收敛半径.
  • 设幂级数 ∑ n = 1 ∞ a n x n \sum_{n=1}^\infty a_n x^n n=1anxn ∑ n = 1 ∞ b n x n \sum_{n=1}^\infty b_n x^n n=1bnxn的收敛半径分别为 R 1 , R 2 R_1,R_2 R1,R2 R = m i n { R 1 , R 2 } R=min\{R_1,R_2\} R=min{R1,R2},则在他们的公共收敛区间内 ( − R , R ) (-R,R) (R,R)内,有
    (1). 级数 α ∑ n = 1 ∞ a n x n + β ∑ n = 1 ∞ b n x n \alpha\sum_{n=1}^\infty a_nx^n+\beta\sum_{n=1}^\infty b_nx^n αn=1anxn+βn=1bnxn收敛, 且 α ∑ n = 1 ∞ a n x n + β ∑ n = 1 ∞ b n x n = ∑ n = 1 ∞ ( α a n + β b n ) x n \alpha\sum_{n=1}^\infty a_nx^n+\beta\sum_{n=1}^\infty b_nx^n=\sum_{n=1}^\infty(\alpha a_n+\beta b_n)x^n αn=1anxn+βn=1bnxn=n=1(αan+βbn)xn
    (2). 他们的乘积收敛,且 ( ∑ n = 1 ∞ a n x n ) ( ∑ n = 1 ∞ b n x n ) = ∑ n = 1 ∞ c n x n c n = a 0 b n + a 1 b n − 1 + . . . + a n b 0 (\sum_{n=1}^\infty a_nx^n)(\sum_{n=1}^\infty b_nx^n)=\sum_{n=1}^\infty c_nx^n\\ c_n=a_0b_n+a_1b_{n-1}+...+a_nb_0 (n=1anxn)(n=1bnxn)=n=1cnxncn=a0bn+a1bn1+...+anb0
    c n c_n cn叫做柯西乘积.
  • 内闭一致收敛性: 设幂级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an的收敛半径为 R , 0 < R < = + ∞ R,0<R<=+\infty R,0<R<=+, 则在他的收敛区间内的任何闭子区间 [ a , b ] [a,b] [a,b]上都是一致收敛的.
    证明分析: 取 [ a , b ] [a,b] [a,b]较大值为r, 取x为r时级数收敛, 而区间内的级数小于x为r时的级数, 因此内闭一致收敛
  • 设幂级数 ∑ n = 1 ∞ a n x n \sum_{n=1}^\infty a_nx^n n=1anxn的和函数为 S n S_n Sn, 收敛半径为R,则有
    (1). S ( x ) S(x) S(x)在收敛区间内是连续的, 即 S ( x ) ∈ C ( − R , R ) S(x)\in C(-R,R) S(x)C(R,R);
    (2). S ( x ) S(x) S(x)在收敛区间内有连续的导数, 并且可以逐项求导, 即 ∀ x ∈ ( − R , R ) \forall x\in(-R,R) x(R,R), 有 S ′ ( x ) = ( ∑ n = 1 ∞ a n x n ) ′ = ∑ n = 1 ∞ ( a n x n ) ′ = ∑ n = 1 ∞ n a n x n − 1 S'(x)=(\sum_{n=1}^\infty a_nx^n)'=\sum_{n=1}^\infty (a_nx^n)'=\sum_{n=1}^\infty na_nx^{n-1} S(x)=(n=1anxn)=n=1(anxn)=n=1nanxn1
    (3). S ( x ) S(x) S(x)在收敛区间 ( − R , R ) (-R,R) (R,R)内可积, 并且可以逐项积分. 类似上式.
  • f f f ( x 0 − R , x 0 + R ) (x_0-R,x_0+R) (x0R,x0+R)内能展开为它在 x 0 x_0 x0处的Taylor级数的充要条件是
    lim ⁡ n → ∞ S n + 1 = f ( x ) \lim_{n\to \infty}S_{n+1}=f(x) nlimSn+1=f(x)
    lim ⁡ n → ∞ R n ( x ) = 0 \lim_{n\to\infty}R_n(x)=0 nlimRn(x)=0
  • f : ( x 0 − R , x 0 + R ) → R f:(x_0-R,x_0+R)\to \large{R} f:(x0R,x0+R)R C ∞ C^\infty C类函数, 如果 { f ( n ) } \{f^{(n)}\} {f(n)} ( x 0 − R , x 0 + R ) (x_0-R,x_0+R) (x0R,x0+R)内是一致有界的, 即 ∀ K > 0 , 使 得 ∀ n ∈ N + 与 x ∈ ( x 0 − R , x 0 + R ) , 都 有 ∣ f ( n ) ∣ < = K , \forall K>0,使得\forall n\in N_+与x\in(x_0-R,x_0+R),都有|f^{(n)}|<=K, K>0,使nN+x(x0R,x0+R),f(n)<=K,那么 f 在 ( x 0 − R , x 0 + R ) f在(x_0-R,x_0+R) f(x0R,x0+R)内必定可以展开称Taylor级数.

举例

  1. 将下列函数展开成x的幂级数.
    (1). f ( x ) = x 9 + x 2 f(x)=\frac{x}{9+x^2} f(x)=9+x2x
    分析:函数类似 1 x + 1 \frac{1}{x+1} x+11,直接提出 x 9 \frac{x}{9} 9x即可
    (2). f ( x ) = x a r c t a n   x − l n 1 + x 2 f(x)=xarctan\ x-ln\sqrt{1+x^2} f(x)=xarctan xln1+x2 ;
    分析: 当函数中存在反三角函数, 可先尝试对其求导化简. 求出其导数(多阶导)的展开式,在积分.
    (3). f ( x ) = 1 4 l n 1 + x 1 − x + 1 2 a r c r t a n   x − x f(x)=\frac{1}{4}ln\frac{1+x}{1-x}+\frac{1}{2}arcrtan\ x- x f(x)=41ln1x1+x+21arcrtan xx.
    分析: 同上题, 对原式进行求导,化简,直接求出导函数的展开式,再积分.
    (4). f ( x ) = l n ( 1 + x 2 + x 3 + x 4 ) f(x)=ln(1+x^2+x^3+x^4) f(x)=ln(1+x2+x3+x4).
    分析: 原式化简为 l n 1 − x 5 1 − x ,   x ≠ 1 ln\frac{1-x^5}{1-x},\ x\neq1 ln1x1x5, x=1
  2. 将下列函数在指定点展开成幂级数:
    (1). f ( x ) = l n   x ,   x 0 = 1 f(x)=ln\ x,\ x_0=1 f(x)=ln x, x0=1
    分析: 直接在原函数中配出x-1即可,即 l n [ 1 + ( x − 1 ) ] ln[1+(x-1)] ln[1+(x1)],在进行展开.
    (2). f ( x ) = 5 x ,   x = 3 f(x)=5^x,\ x=3 f(x)=5x, x=3
    分析: 指数函数可以通过变换成为e的x次方, 此题中 f ( x ) = e l n   5 x = e l n   5 3 + ( x − 3 ) = e 3 l n   5 ∗ e ( x − 3 ) l n   5 = 125 ∗ e ( x − 3 ) l n   5 f(x)=e^{ln\ 5^x}=e^{ln\ 5^{3+(x-3)}}=e^{3ln\ 5}*e^{(x-3)ln\ 5}=125*e^{(x-3)ln\ 5} f(x)=eln 5x=eln 53+(x3)=e3ln 5e(x3)ln 5=125e(x3)ln 5,再进行展开即可.
    3.将函数 f ( x ) = ∫ 0 x l n ( 1 + x ) x d x f(x)=\int_0^x \frac{ln(1+x)}{x}dx f(x)=0xxln(1+x)dx展开成麦克劳林级数.
    分析: 分子单独展开, 得 l n ( x + 1 ) = ∑ n = 1 ∞ ( − 1 ) n x n n ln(x+1)=\sum_{n=1}^\infty (-1)^n\frac{x^n}{n} ln(x+1)=n=1(1)nnxn,故分母的x可直接忽略.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值