幂级数
相关概念
- 形如
∑
n
=
1
∞
a
n
x
n
=
a
0
+
a
1
x
+
a
2
x
2
+
.
.
.
+
a
n
x
n
+
.
.
.
\sum_{n=1}^\infty a_nx^n=a_0+a_1x+a_2x^2+...+a_nx^n+...
n=1∑∞anxn=a0+a1x+a2x2+...+anxn+...或
∑ n = 1 ∞ a n ( x − x 0 ) n = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + . . . + a n ( x − x 0 ) n + . . . \sum_{n=1}^\infty a_n(x-x_0)^n=a_0+a_1(x-x_0)+a_2(x-x_0)^2+...+a_n(x-x_0)^n+... n=1∑∞an(x−x0)n=a0+a1(x−x0)+a2(x−x0)2+...+an(x−x0)n+...的函数项级数,称为幂级数. 其中, a 0 , x 0 a_0,x_0 a0,x0都是常数项. - 当级数在 ∣ x ∣ < R |x|<R ∣x∣<R时收敛, R称为收敛半径, 对应的开区间为收敛区间.
- 由
a
n
=
f
(
n
)
(
x
0
)
n
!
,
n
=
1
,
2
,
3...
a_n=\frac{f^{(n)}(x_0)}{n!}, n=1,2,3...
an=n!f(n)(x0),n=1,2,3...所确定的幂级数
f ( x ) = ∑ n = 0 ∞ a n ( x − x 0 ) n f(x)=\sum_{n=0}^\infty a_n(x-x_0)^n f(x)=n=0∑∞an(x−x0)n称为 f f f在 x 0 x_0 x0处的Taylor级数.
相关性质
- Abel定理: 对于幂级数
∑
n
=
1
∞
a
n
x
n
=
a
0
+
a
1
x
+
a
2
x
2
+
.
.
.
+
a
n
x
n
+
.
.
.
\sum_{n=1}^\infty a_nx^n=a_0+a_1x+a_2x^2+...+a_nx^n+...
n=1∑∞anxn=a0+a1x+a2x2+...+anxn+...下列命题成立
(1) 若他在点 x 0 ! = 0 x_0!=0 x0!=0处收敛,则当 ∣ x ∣ < ∣ x 0 ∣ |x|<|x_0| ∣x∣<∣x0∣时, 级数绝对收敛.
(2)若它再点 x ~ 0 ! = 0 \widetilde x_0!=0 x 0!=0处发散, 则当 ∣ x ∣ > ∣ x ~ 0 ∣ |x|>|\widetilde x_0| ∣x∣>∣x 0∣时, 级数发散. - 幂级数的收敛性只有三种情况:
(1). 在R上收敛, 且绝对收敛.
(2). 仅在 x = 0 x=0 x=0时收敛.
(3). 存在一个正数R, 当 ∣ x ∣ < R |x|<R ∣x∣<R时绝对收敛, 当 ∣ x ∣ > R |x|>R ∣x∣>R时发散. - 设有幂级数 ∑ n = 1 ∞ a n x n \sum_{n=1}^\infty a_n x^n ∑n=1∞anxn,若 a n ! = 0 a_n!=0 an!=0, 则 lim n → ∞ a n a n + 1 \lim_{n\to \infty}\frac{a_n}{a_{n+1}} limn→∞an+1an为该幂级数的收敛半径.
- 设有幂级数 ∑ n = 1 ∞ a n x n \sum_{n=1}^\infty a_n x^n ∑n=1∞anxn,若 a n ! = 0 a_n!=0 an!=0, 则 l i m n → ∞ 1 ∣ a n ∣ lim_{n\to\infty}\frac{1}{\sqrt{|a_n|}} limn→∞∣an∣1为其收敛半径.
- 设幂级数
∑
n
=
1
∞
a
n
x
n
\sum_{n=1}^\infty a_n x^n
∑n=1∞anxn和
∑
n
=
1
∞
b
n
x
n
\sum_{n=1}^\infty b_n x^n
∑n=1∞bnxn的收敛半径分别为
R
1
,
R
2
R_1,R_2
R1,R2令
R
=
m
i
n
{
R
1
,
R
2
}
R=min\{R_1,R_2\}
R=min{R1,R2},则在他们的公共收敛区间内
(
−
R
,
R
)
(-R,R)
(−R,R)内,有
(1). 级数 α ∑ n = 1 ∞ a n x n + β ∑ n = 1 ∞ b n x n \alpha\sum_{n=1}^\infty a_nx^n+\beta\sum_{n=1}^\infty b_nx^n α∑n=1∞anxn+β∑n=1∞bnxn收敛, 且 α ∑ n = 1 ∞ a n x n + β ∑ n = 1 ∞ b n x n = ∑ n = 1 ∞ ( α a n + β b n ) x n \alpha\sum_{n=1}^\infty a_nx^n+\beta\sum_{n=1}^\infty b_nx^n=\sum_{n=1}^\infty(\alpha a_n+\beta b_n)x^n αn=1∑∞anxn+βn=1∑∞bnxn=n=1∑∞(αan+βbn)xn
(2). 他们的乘积收敛,且 ( ∑ n = 1 ∞ a n x n ) ( ∑ n = 1 ∞ b n x n ) = ∑ n = 1 ∞ c n x n c n = a 0 b n + a 1 b n − 1 + . . . + a n b 0 (\sum_{n=1}^\infty a_nx^n)(\sum_{n=1}^\infty b_nx^n)=\sum_{n=1}^\infty c_nx^n\\ c_n=a_0b_n+a_1b_{n-1}+...+a_nb_0 (n=1∑∞anxn)(n=1∑∞bnxn)=n=1∑∞cnxncn=a0bn+a1bn−1+...+anb0
c n c_n cn叫做柯西乘积. - 内闭一致收敛性: 设幂级数
∑
n
=
1
∞
a
n
\sum_{n=1}^\infty a_n
∑n=1∞an的收敛半径为
R
,
0
<
R
<
=
+
∞
R,0<R<=+\infty
R,0<R<=+∞, 则在他的收敛区间内的任何闭子区间
[
a
,
b
]
[a,b]
[a,b]上都是一致收敛的.
证明分析: 取 [ a , b ] [a,b] [a,b]较大值为r, 取x为r时级数收敛, 而区间内的级数小于x为r时的级数, 因此内闭一致收敛 - 设幂级数
∑
n
=
1
∞
a
n
x
n
\sum_{n=1}^\infty a_nx^n
∑n=1∞anxn的和函数为
S
n
S_n
Sn, 收敛半径为R,则有
(1). S ( x ) S(x) S(x)在收敛区间内是连续的, 即 S ( x ) ∈ C ( − R , R ) S(x)\in C(-R,R) S(x)∈C(−R,R);
(2). S ( x ) S(x) S(x)在收敛区间内有连续的导数, 并且可以逐项求导, 即 ∀ x ∈ ( − R , R ) \forall x\in(-R,R) ∀x∈(−R,R), 有 S ′ ( x ) = ( ∑ n = 1 ∞ a n x n ) ′ = ∑ n = 1 ∞ ( a n x n ) ′ = ∑ n = 1 ∞ n a n x n − 1 S'(x)=(\sum_{n=1}^\infty a_nx^n)'=\sum_{n=1}^\infty (a_nx^n)'=\sum_{n=1}^\infty na_nx^{n-1} S′(x)=(n=1∑∞anxn)′=n=1∑∞(anxn)′=n=1∑∞nanxn−1
(3). S ( x ) S(x) S(x)在收敛区间 ( − R , R ) (-R,R) (−R,R)内可积, 并且可以逐项积分. 类似上式. -
f
f
f在
(
x
0
−
R
,
x
0
+
R
)
(x_0-R,x_0+R)
(x0−R,x0+R)内能展开为它在
x
0
x_0
x0处的Taylor级数的充要条件是
lim n → ∞ S n + 1 = f ( x ) \lim_{n\to \infty}S_{n+1}=f(x) n→∞limSn+1=f(x)
lim n → ∞ R n ( x ) = 0 \lim_{n\to\infty}R_n(x)=0 n→∞limRn(x)=0 - 设 f : ( x 0 − R , x 0 + R ) → R f:(x_0-R,x_0+R)\to \large{R} f:(x0−R,x0+R)→R是 C ∞ C^\infty C∞类函数, 如果 { f ( n ) } \{f^{(n)}\} {f(n)}在 ( x 0 − R , x 0 + R ) (x_0-R,x_0+R) (x0−R,x0+R)内是一致有界的, 即 ∀ K > 0 , 使 得 ∀ n ∈ N + 与 x ∈ ( x 0 − R , x 0 + R ) , 都 有 ∣ f ( n ) ∣ < = K , \forall K>0,使得\forall n\in N_+与x\in(x_0-R,x_0+R),都有|f^{(n)}|<=K, ∀K>0,使得∀n∈N+与x∈(x0−R,x0+R),都有∣f(n)∣<=K,那么 f 在 ( x 0 − R , x 0 + R ) f在(x_0-R,x_0+R) f在(x0−R,x0+R)内必定可以展开称Taylor级数.
举例
- 将下列函数展开成x的幂级数.
(1). f ( x ) = x 9 + x 2 f(x)=\frac{x}{9+x^2} f(x)=9+x2x
分析:函数类似 1 x + 1 \frac{1}{x+1} x+11,直接提出 x 9 \frac{x}{9} 9x即可
(2). f ( x ) = x a r c t a n x − l n 1 + x 2 f(x)=xarctan\ x-ln\sqrt{1+x^2} f(x)=xarctan x−ln1+x2;
分析: 当函数中存在反三角函数, 可先尝试对其求导化简. 求出其导数(多阶导)的展开式,在积分.
(3). f ( x ) = 1 4 l n 1 + x 1 − x + 1 2 a r c r t a n x − x f(x)=\frac{1}{4}ln\frac{1+x}{1-x}+\frac{1}{2}arcrtan\ x- x f(x)=41ln1−x1+x+21arcrtan x−x.
分析: 同上题, 对原式进行求导,化简,直接求出导函数的展开式,再积分.
(4). f ( x ) = l n ( 1 + x 2 + x 3 + x 4 ) f(x)=ln(1+x^2+x^3+x^4) f(x)=ln(1+x2+x3+x4).
分析: 原式化简为 l n 1 − x 5 1 − x , x ≠ 1 ln\frac{1-x^5}{1-x},\ x\neq1 ln1−x1−x5, x=1 - 将下列函数在指定点展开成幂级数:
(1). f ( x ) = l n x , x 0 = 1 f(x)=ln\ x,\ x_0=1 f(x)=ln x, x0=1
分析: 直接在原函数中配出x-1即可,即 l n [ 1 + ( x − 1 ) ] ln[1+(x-1)] ln[1+(x−1)],在进行展开.
(2). f ( x ) = 5 x , x = 3 f(x)=5^x,\ x=3 f(x)=5x, x=3
分析: 指数函数可以通过变换成为e的x次方, 此题中 f ( x ) = e l n 5 x = e l n 5 3 + ( x − 3 ) = e 3 l n 5 ∗ e ( x − 3 ) l n 5 = 125 ∗ e ( x − 3 ) l n 5 f(x)=e^{ln\ 5^x}=e^{ln\ 5^{3+(x-3)}}=e^{3ln\ 5}*e^{(x-3)ln\ 5}=125*e^{(x-3)ln\ 5} f(x)=eln 5x=eln 53+(x−3)=e3ln 5∗e(x−3)ln 5=125∗e(x−3)ln 5,再进行展开即可.
3.将函数 f ( x ) = ∫ 0 x l n ( 1 + x ) x d x f(x)=\int_0^x \frac{ln(1+x)}{x}dx f(x)=∫0xxln(1+x)dx展开成麦克劳林级数.
分析: 分子单独展开, 得 l n ( x + 1 ) = ∑ n = 1 ∞ ( − 1 ) n x n n ln(x+1)=\sum_{n=1}^\infty (-1)^n\frac{x^n}{n} ln(x+1)=∑n=1∞(−1)nnxn,故分母的x可直接忽略.