反馈的基本概念和判断方法
- 正负反馈: 如果反馈到输入回路的信号和原来的输入信号作用相同, 二者叠加使放大电路净输入增加, 称这样的反馈为正反馈, 反之是负反馈.
- 电压反馈和电流反馈: 反馈信号取自输出电压则为电压反馈, 反馈信号取自输出电流成为电流反馈, 电压反馈可以稳定输出电压(降低输出电阻), 电流反馈可以稳定电流(增加输出电阻)
- 串联反馈和并联反馈: 若反馈信号在输入端与输入信号进行串联求和, 成为串联反馈, 反之是并联反馈. 如果信号源内阻较大, 应采用并联反馈, 反之若信号源内阻较小则适合串联反馈.
- 反馈极性的判断: 先假定输入信号的瞬时极性, 再确定输出量的极性, 再确定反馈量的极性, 再判断反馈量与原输入量对净输入的作用.
- 反馈基本方程式:
闭环增益: A f A_f Af, 源增益: A s f A_{sf} Asf, 开环增益: A A A
A f = X f X o A ˙ f = X o X i = X o X i d + X f = X o X i d + F X o = A X i d X i d + A F X i d A f = A 1 + A F A s f = X o X s = K A f A_f=\frac{X_f}{X_o}\\[2ex]\dot A_f=\frac{X_o}{X_i}=\frac{X_o}{X_id+X_f}=\frac{X_o}{X_{id}+FX_{o}}=\frac{AX_{id}}{X_{id}+AFX_{id}}\\[2ex] A_f=\frac{A}{1+AF}\\[3ex] A_{sf}=\frac{X_o}{X_s}=KA_f Af=XoXfA˙f=XiXo=Xid+XfXo=Xid+FXoXo=Xid+AFXidAXidAf=1+AFAAsf=XsXo=KAf - 反馈深度: 根据反馈基本方程式, ∣ 1 + A ˙ F ˙ ∣ |1+\dot A\dot F| ∣1+A˙F˙∣越大, 闭环增益下降的越多, 令 D = 1 + F ˙ A ˙ D=1+\dot F\dot A D=1+F˙A˙, 称 D ˙ \dot D D˙为反馈深度. 深度反馈下 A ˙ f = 1 F ˙ \dot A_f=\frac{1}{\dot F} A˙f=F˙1
- 环路增益:
X
f
X
i
d
=
A
˙
F
˙
\frac{X_f}{X_{id}}=\dot A\dot F
XidXf=A˙F˙
A ˙ F ˙ \dot A\dot F A˙F˙称为环路增益.
负反馈放大电路稳定性分析
- 自激振荡产生的原因: 在中频区引入负反馈时,
X
˙
f
\dot X_f
X˙f和
X
˙
i
\dot X_i
X˙i同相,
A
˙
F
˙
>
0
\dot A\dot F>0
A˙F˙>0,此时
φ
A
+
φ
F
=
2
n
π
\varphi _A+\varphi_F=2n\pi
φA+φF=2nπ, 反馈信号,输入信号, 净输入信号的关系为
∣
X
˙
i
d
∣
=
∣
X
˙
i
∣
−
∣
X
˙
f
∣
|\dot X_{id}|=|\dot X_i|-|\dot X_f|
∣X˙id∣=∣X˙i∣−∣X˙f∣.
由于耦合电容, 旁路电容及结电容的影响, A ˙ F ˙ \dot A\dot F A˙F˙产生滞后相移, 如果某一时刻该附加相移达到 18 0 o 180^o 180o, X ˙ i \dot X_i X˙i和 X ˙ f \dot X_f X˙f变成反相, 负反馈变成正反馈. - 稳定性判别: 当 { ∣ A ˙ F ˙ ∣ = 1 ∣ Δ φ A + Δ φ F ∣ < 18 0 o \begin{cases} |\dot A\dot F|=1\\[2ex] |\Delta \varphi_A+\Delta \varphi_F|<180^o \end{cases} ⎩⎨⎧∣A˙F˙∣=1∣ΔφA+ΔφF∣<180o或 { ∣ A ˙ F ˙ ∣ < 1 ∣ Δ φ A + Δ φ F ∣ = 18 0 o \begin{cases} |\dot A\dot F|<1\\[2ex] |\Delta \varphi_A+\Delta \varphi_F|=180^o \end{cases} ⎩⎨⎧∣A˙F˙∣<1∣ΔφA+ΔφF∣=180o
- 增益裕度: 当
f
=
f
0
f=f_0
f=f0时,
A
˙
F
˙
\dot A\dot F
A˙F˙的附加相移达到
∣
18
0
o
∣
|180^o|
∣180o∣度, 所对应的增益称为增益裕度, 记为
G
m
=
20
lg
∣
A
˙
F
˙
∣
G_m=20\lg |\dot A\dot F|
Gm=20lg∣A˙F˙∣
对于负反馈放大电路 ,增益裕度一般小于0, 且 G m G_m Gm越大, 电路越稳定, 一般要求 G m < − 10 d B G_m<-10 dB Gm<−10dB - 相位裕度: 当
f
=
f
c
f=f_c
f=fc时,
20
lg
∣
A
˙
F
˙
∣
=
0
20\lg |\dot A\dot F|=0
20lg∣A˙F˙∣=0,此时
∣
φ
A
+
φ
F
∣
|\varphi_A+\varphi_F|
∣φA+φF∣与
18
0
o
180^o
180o的差称为相位裕度, 记为$
φ
m
=
18
0
o
−
∣
φ
(
f
c
)
∣
\varphi_m=180^o-|\varphi(f_c)|
φm=180o−∣φ(fc)∣
对于负反馈放大电路, φ m > 0 \varphi_m>0 φm>0, 且 φ m \varphi_m φm越大, 电路越稳定, 一般要求 φ m ≥ 4 5 o \varphi_m\geq45^o φm≥45o - 分析方法: 利用基本放大电路的开环增益波特图来分析, 假设反馈网络为纯阻性的, 即 φ F = 0 \varphi_F=0 φF=0, 自激振荡的幅值条件为 ∣ A ˙ F ˙ ∣ = 1 |\dot A\dot F|=1 ∣A˙F˙∣=1,即 ∣ A ˙ ∣ = ∣ 1 F ˙ ∣ |\dot A|=|\frac{1}{\dot F}| ∣A˙∣=∣F˙1∣, 这样就可以在 20 lg ∣ A ˙ ∣ 20\lg |\dot A| 20lg∣A˙∣上绘出一条 20 lg 1 F ˙ 20\lg \frac{1}{\dot F} 20lgF˙1的水平线, 称为反馈线. 观察该点的附加相移大小即可判断放大电路稳定性.