前言:
分类问题和回归问题是监督学习的两大种类,关于回归使用的损失函数: 点击链接.
而分类问题一般分为二分类和多分类,下面我们看看在分类问题中使用的损失函数。
目录
1、二分类问题
(1)交叉熵损失函数
在二分类问题中,损失函数一般为交叉熵损失函数。如下面公式,是对于单个样本的损失函数。
下面是多个样本例子,即mini-batch的损失函数。
(2)pytorch实现
CLASS torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction='mean')
上面这个就是二分类交叉熵pytorch封装的类。
参数:
weight (Tensor, optional) -对每个批次元件的损失进行手动重标定。如果给定,必须是一个大小为n*batch的张量。
size_average (bool, optional) – 默认情况下,损失是对批处理中的每个损失元素进行平均。注意,对于一些损失,每个样本有多个元素。如果字段size_average被设置为False,则对每个小批处理的损失进行累加。当reduce为False时被忽略。默认值:True
reduce (bool, optional) –默认情况下为True,损失根据size_average对每个小批的观察值进行平均或求和。当reduce为False时,返回每个批处理元素的损失并忽略size_average。
reduction (string, optional) -指定要应用于输出的减少数,值可以为’none’ 或 ‘mean’ 或’sum’。“none”:不进行降价;“mean”:输出的总和除以输出元素的数量;‘sum’:对输出进行求和。注意:这是在size_average和reduce没有使用的时候,同时,指定这两个参数中的任何一个都将覆盖reduction。默认值:“mean”。
例子:
>>> import torch
>>> import torch.nn as nn
>>> m = nn.Sigmoid()
>>> loss = nn.BCELoss() # 没有参数,用的是默认值
>>> input