转换
a x = y ⟺ log a y = x a^x = y \Longleftrightarrow \log_ay=x ax=y⟺logay=x
定理
(a)
log
a
M
+
log
a
N
=
log
a
(
M
N
)
\log_aM + \log_aN = \log_a{(MN)}
logaM+logaN=loga(MN)
(b)
log
a
M
−
log
a
N
=
log
a
M
N
\log_aM - \log_aN = \log_a{\frac{M}{N}}
logaM−logaN=logaNM
(c)
log
a
M
n
=
n
log
a
M
\log_a{M^n} = n\log_aM
logaMn=nlogaM(推广形式:
log
a
m
M
n
=
n
m
log
a
M
\log_{a^m}{M^n} = \frac{n}{m}\log_aM
logamMn=mnlogaM)
(d)
a
log
a
m
=
m
a^{\log_am} = m
alogam=m
换底公式
(a) log a b = log c b log c a \log_ab = \frac{\log_cb}{\log_ca} logab=logcalogcb(特别地,当 c = b c=b c=b 时, l o g a b = 1 log b a log_ab = \frac{1}{\log_ba} logab=logba1)
证明
- 定理(a)
令 x = log a M , y = log a N , z = log a M N x=\log_aM, y=\log_aN, z=\log_a{MN} x=logaM,y=logaN,z=logaMN
可得:
a x = M a^x = M ax=M
a y = N a^y = N ay=N
a z = M N a^z = MN az=MN
因此: a z = M N = a x × a y = a x + y a^z = MN = a^x \times a^y = a^{x+y} az=MN=ax×ay=ax+y
由此可得: x + y = z x + y = z x+y=z
所以: log a M + log a N = log a ( M N ) \log_aM + \log_aN = \log_a{(MN)} logaM+logaN=loga(MN) - 定理(c)
令 x = log a M n , z = n log a M x=\log_a{M^n}, z = n\log_aM x=logaMn,z=nlogaM
可得:
a x = M n a^x = M^n ax=Mn
a z n = M ⇒ a z = M n a^{\frac{z}{n}}=M \Rightarrow a^z = M^n anz=M⇒az=Mn
由此可得: a x = a z ⇒ x = z a^x = a^z \Rightarrow x = z ax=az⇒x=z
所以: log a M n = n log a M \log_a{M^n} = n\log_aM logaMn=nlogaM - 换底公式
令 x = log a b , y = log c b , z = log c a x = \log_ab, y = \log_cb, z = \log_ca x=logab,y=logcb,z=logca
可得:
a x = b a^x = b ax=b
c y = b c^y = b cy=b
c z = a ⇒ c x z = a x = b = c y c^z = a \Rightarrow c^{xz} = a^x = b = c^y cz=a⇒cxz=ax=b=cy
由此可得: x z = y ⇒ x = y z xz = y \Rightarrow x = \frac{y}{z} xz=y⇒x=zy
所以: log a b = log c b log c a \log_ab = \frac{\log_cb}{\log_ca} logab=logcalogcb