微积分-前置6(对数)

转换

a x = y ⟺ log ⁡ a y = x a^x = y \Longleftrightarrow \log_ay=x ax=ylogay=x

定理

(a) log ⁡ a M + log ⁡ a N = log ⁡ a ( M N ) \log_aM + \log_aN = \log_a{(MN)} logaM+logaN=loga(MN)
(b) log ⁡ a M − log ⁡ a N = log ⁡ a M N \log_aM - \log_aN = \log_a{\frac{M}{N}} logaMlogaN=logaNM
(c) log ⁡ a M n = n log ⁡ a M \log_a{M^n} = n\log_aM logaMn=nlogaM(推广形式: log ⁡ a m M n = n m log ⁡ a M \log_{a^m}{M^n} = \frac{n}{m}\log_aM logamMn=mnlogaM
(d) a log ⁡ a m = m a^{\log_am} = m alogam=m

换底公式

(a) log ⁡ a b = log ⁡ c b log ⁡ c a \log_ab = \frac{\log_cb}{\log_ca} logab=logcalogcb(特别地,当 c = b c=b c=b 时, l o g a b = 1 log ⁡ b a log_ab = \frac{1}{\log_ba} logab=logba1

证明

  1. 定理(a)
    x = log ⁡ a M , y = log ⁡ a N , z = log ⁡ a M N x=\log_aM, y=\log_aN, z=\log_a{MN} x=logaM,y=logaN,z=logaMN
    可得:
    a x = M a^x = M ax=M
    a y = N a^y = N ay=N
    a z = M N a^z = MN az=MN
    因此: a z = M N = a x × a y = a x + y a^z = MN = a^x \times a^y = a^{x+y} az=MN=ax×ay=ax+y
    由此可得: x + y = z x + y = z x+y=z
    所以: log ⁡ a M + log ⁡ a N = log ⁡ a ( M N ) \log_aM + \log_aN = \log_a{(MN)} logaM+logaN=loga(MN)
  2. 定理(c)
    x = log ⁡ a M n , z = n log ⁡ a M x=\log_a{M^n}, z = n\log_aM x=logaMn,z=nlogaM
    可得:
    a x = M n a^x = M^n ax=Mn
    a z n = M ⇒ a z = M n a^{\frac{z}{n}}=M \Rightarrow a^z = M^n anz=Maz=Mn
    由此可得: a x = a z ⇒ x = z a^x = a^z \Rightarrow x = z ax=azx=z
    所以: log ⁡ a M n = n log ⁡ a M \log_a{M^n} = n\log_aM logaMn=nlogaM
  3. 换底公式
    x = log ⁡ a b , y = log ⁡ c b , z = log ⁡ c a x = \log_ab, y = \log_cb, z = \log_ca x=logab,y=logcb,z=logca
    可得:
    a x = b a^x = b ax=b
    c y = b c^y = b cy=b
    c z = a ⇒ c x z = a x = b = c y c^z = a \Rightarrow c^{xz} = a^x = b = c^y cz=acxz=ax=b=cy
    由此可得: x z = y ⇒ x = y z xz = y \Rightarrow x = \frac{y}{z} xz=yx=zy
    所以: log ⁡ a b = log ⁡ c b log ⁡ c a \log_ab = \frac{\log_cb}{\log_ca} logab=logcalogcb
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值