微积分-反函数6.8(不定式和洛必达法则)

洛必达法则指出,对于可导的函数 f f f g g g,如果:
lim ⁡ x → a f ( x ) = 0  and  lim ⁡ x → a g ( x ) = 0 \lim_{x \to a} f(x) = 0 \text{ and } \lim_{x \to a} g(x) = 0 xalimf(x)=0 and xalimg(x)=0

lim ⁡ x → a f ( x ) = ± ∞  and  lim ⁡ x → a g ( x ) = ± ∞ \lim_{x \to a} f(x) = \pm \infty \text{ and } \lim_{x \to a} g(x) = \pm \infty xalimf(x)=± and xalimg(x)=±
并且 g ’ ( x ) ≠ 0 g’(x) \neq 0 g(x)=0 在包含 a a a 的开放区间上成立,那么:
lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ’ ( x ) g ’ ( x ) \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f’(x)}{g’(x)} xalimg(x)f(x)=xalimg(x)f(x)

例1 lim ⁡ x → 1 ln ⁡ x x − 1 \lim_{{x \to 1}} \frac{{\ln x}}{{x - 1}} limx1x1lnx

因为

lim ⁡ x → 1 ln ⁡ x = ln ⁡ 1 = 0 \lim_{{x \to 1}} \ln x = \ln 1 = 0 limx1lnx=ln1=0, 且 lim ⁡ x → 1 ( x − 1 ) = 0 \lim_{{x \to 1}} (x - 1) = 0 limx1(x1)=0

所以该极限是 0 0 \frac{0}{0} 00 形式的不定式,因此我们可以应用洛必达法则:

lim ⁡ x → 1 ln ⁡ x x − 1 = lim ⁡ x → 1 d d x ( ln ⁡ x ) d d x ( x − 1 ) = lim ⁡ x → 1 1 / x 1 = lim ⁡ x → 1 1 x = 1 \lim_{{x \to 1}} \frac{{\ln x}}{{x - 1}} = \lim_{{x \to 1}} \frac{{\frac{d}{dx} (\ln x)}}{{\frac{d}{dx} (x - 1)}} = \lim_{{x \to 1}} \frac{{1/x}}{{1}} = \lim_{{x \to 1}} \frac{1}{x} = 1 limx1x1lnx=limx1dxd(x1)dxd(lnx)=limx111/x=limx1x1=1

例2 计算 lim ⁡ x → ∞ e x x 2 \lim_{{x \to \infty}} \frac{{e^x}}{{x^2}} limxx2ex

我们有 lim ⁡ x → ∞ e x = ∞ \lim_{{x \to \infty}} e^x = \infty limxex= lim ⁡ x → ∞ x 2 = ∞ \lim_{{x \to \infty}} x^2 = \infty limxx2=,所以极限是 ∞ ∞ \frac{\infty}{\infty} 形式的不定式,应用洛必达法则给出

lim ⁡ x → ∞ e x x 2 = lim ⁡ x → ∞ d d x ( e x ) d d x ( x 2 ) = lim ⁡ x → ∞ e x 2 x \lim_{{x \to \infty}} \frac{{e^x}}{{x^2}} = \lim_{{x \to \infty}} \frac{{\frac{d}{dx} (e^x)}}{{\frac{d}{dx} (x^2)}} = \lim_{{x \to \infty}} \frac{{e^x}}{{2x}} xlimx2ex=xlimdxd(x2)dxd(ex)=xlim2xex

因为 e x → ∞ e^x \to \infty ex 2 x → ∞ 2x \to \infty 2x x → ∞ x \to \infty x 时,右侧的极限也是不定式,但是再次应用洛必达法则给出

lim ⁡ x → ∞ e x x 2 = lim ⁡ x → ∞ e x 2 x = lim ⁡ x → ∞ e x 2 = ∞ \lim_{{x \to \infty}} \frac{{e^x}}{{x^2}} = \lim_{{x \to \infty}} \frac{{e^x}}{{2x}} = \lim_{{x \to \infty}} \frac{{e^x}}{2} = \infty xlimx2ex=xlim2xex=xlim2ex=

例3 计算 lim ⁡ x → ∞ ln ⁡ x x 3 \lim_{{x \to \infty}} \frac{{\ln x}}{{\sqrt[3]{x}}} limx3x lnx

由于 ln ⁡ x → ∞ \ln x \to \infty lnx x 3 → ∞ \sqrt[3]{x} \to \infty 3x x → ∞ x \to \infty x 时,可以应用洛必达法则:

lim ⁡ x → ∞ ln ⁡ x x 3 = lim ⁡ x → ∞ 1 / x 1 3 x − 2 / 3 \lim_{{x \to \infty}} \frac{{\ln x}}{{\sqrt[3]{x}}} = \lim_{{x \to \infty}} \frac{{1/x}}{{\frac{1}{3}x^{-2/3}}} xlim3x lnx=xlim31x2/31/x

注意,右侧的极限现在是 0 0 \frac{0}{0} 00 形式的不定式。但我们不需要像例子 2 中那样再次应用洛必达法则,简化表达式后可以看到第二次应用是不必要的:

lim ⁡ x → ∞ ln ⁡ x x 3 = lim ⁡ x → ∞ 1 / x 1 3 x − 2 / 3 = lim ⁡ x → ∞ 3 x 3 = 0 \lim_{{x \to \infty}} \frac{{\ln x}}{{\sqrt[3]{x}}} = \lim_{{x \to \infty}} \frac{{1/x}}{{\frac{1}{3}x^{-2/3}}} = \lim_{{x \to \infty}} \frac{3}{{\sqrt[3]{x}}} = 0 xlim3x lnx=xlim31x2/31/x=xlim3x 3=0

例4 lim ⁡ x → 0 tan ⁡ x − x x 3 \lim_{{x \to 0}} \frac{{\tan x - x}}{{x^3}} limx0x3tanxx。(参见练习 1.5.44)

注意到 tan ⁡ x − x → 0 \tan x - x \to 0 tanxx0 x 3 → 0 x^3 \to 0 x30 x → 0 x \to 0 x0 时,我们使用洛必达法则:

lim ⁡ x → 0 tan ⁡ x − x x 3 = lim ⁡ x → 0 sec ⁡ 2 x − 1 3 x 2 \lim_{{x \to 0}} \frac{{\tan x - x}}{{x^3}} = \lim_{{x \to 0}} \frac{{\sec^2 x - 1}}{{3x^2}} x0limx3tanxx=x0lim3x2sec2x1

由于右侧的极限仍然是 0 0 \frac{0}{0} 00 形式的不定式,我们再次应用洛必达法则:

lim ⁡ x → 0 sec ⁡ 2 x − 1 3 x 2 = lim ⁡ x → 0 2 sec ⁡ 2 x tan ⁡ x 6 x \lim_{{x \to 0}} \frac{{\sec^2 x - 1}}{{3x^2}} = \lim_{{x \to 0}} \frac{{2 \sec^2 x \tan x}}{{6x}} x0lim3x2sec2x1=x0lim6x2sec2xtanx

因为 lim ⁡ x → 0 sec ⁡ 2 x = 1 \lim_{{x \to 0}} \sec^2 x = 1 limx0sec2x=1,我们简化计算如下:

lim ⁡ x → 0 2 sec ⁡ 2 x tan ⁡ x 6 x = 1 3 lim ⁡ x → 0 sec ⁡ 2 x ⋅ lim ⁡ x → 0 tan ⁡ x x = 1 3 lim ⁡ x → 0 tan ⁡ x x \lim_{{x \to 0}} \frac{{2 \sec^2 x \tan x}}{{6x}} = \frac{1}{3} \lim_{{x \to 0}} \sec^2 x \cdot \lim_{{x \to 0}} \frac{{\tan x}}{x} = \frac{1}{3} \lim_{{x \to 0}} \frac{{\tan x}}{x} x0lim6x2sec2xtanx=31x0limsec2xx0limxtanx=31x0limxtanx

我们可以通过第三次应用洛必达法则或将 tan ⁡ x \tan x tanx 写作 sin ⁡ x cos ⁡ x \frac{{\sin x}}{{\cos x}} cosxsinx 并使用三角函数极限的知识来计算这个极限。将所有步骤结合起来,我们得到:

lim ⁡ x → 0 tan ⁡ x − x x 3 = lim ⁡ x → 0 sec ⁡ 2 x − 1 3 x 2 = lim ⁡ x → 0 2 sec ⁡ 2 x tan ⁡ x 6 x = 1 3 lim ⁡ x → 0 tan ⁡ x x = 1 3 ⋅ 1 = 1 3 \lim_{{x \to 0}} \frac{{\tan x - x}}{{x^3}} = \lim_{{x \to 0}} \frac{{\sec^2 x - 1}}{{3x^2}} = \lim_{{x \to 0}} \frac{{2 \sec^2 x \tan x}}{{6x}} = \frac{1}{3} \lim_{{x \to 0}} \frac{{\tan x}}{x} = \frac{1}{3} \cdot 1 = \frac{1}{3} x0limx3tanxx=x0lim3x2sec2x1=x0lim6x2sec2xtanx=31x0limxtanx=311=31

例5 lim ⁡ x → π − sin ⁡ x 1 − cos ⁡ x \lim_{{x \to \pi^-}} \frac{{\sin x}}{{1 - \cos x}} limxπ1cosxsinx

如果我们盲目地尝试使用洛必达法则,我们会得到

lim ⁡ x → π − sin ⁡ x 1 − cos ⁡ x = lim ⁡ x → π − cos ⁡ x − sin ⁡ x = − ∞ \lim_{{x \to \pi^-}} \frac{{\sin x}}{{1 - \cos x}} = \lim_{{x \to \pi^-}} \frac{{\cos x}}{{-\sin x}} = -\infty xπlim1cosxsinx=xπlimsinxcosx=

这是错误的!尽管 sin ⁡ x → 0 \sin x \to 0 sinx0 x → π − x \to \pi^- xπ 时,注意到分母 1 − cos ⁡ x 1 - \cos x 1cosx 并没有趋近于 0,因此在此处无法应用洛必达法则。

实际上,这个极限很容易找到,因为该函数在 π \pi π 处是连续的,并且此时分母不为零:

lim ⁡ x → π − sin ⁡ x 1 − cos ⁡ x = sin ⁡ π 1 − cos ⁡ π = 0 1 − ( − 1 ) = 0 \lim_{{x \to \pi^-}} \frac{{\sin x}}{{1 - \cos x}} = \frac{{\sin \pi}}{{1 - \cos \pi}} = \frac{0}{{1 - (-1)}} = 0 xπlim1cosxsinx=1cosπsinπ=1(1)0=0

例子 5 展示了如果在没有思考的情况下使用洛必达法则可能会出错。其他极限可以通过洛必达法则找到,但使用其他方法更容易找到。因此,在求任意极限时,你应该在使用洛必达法则之前考虑其他方法。

不定型积

如果 lim ⁡ x → a f ( x ) = 0 \lim_{{x \to a}} f(x) = 0 limxaf(x)=0 lim ⁡ x → a g ( x ) = ∞ \lim_{{x \to a}} g(x) = \infty limxag(x)=(或 − ∞ -\infty ),那么 lim ⁡ x → a [ f ( x ) g ( x ) ] \lim_{{x \to a}} [f(x)g(x)] limxa[f(x)g(x)] 的值并不明确。 f f f g g g 之间存在竞争。如果 f f f 占上风,答案将是 0 0 0;如果 g g g 占上风,答案将是 ∞ \infty (或 − ∞ -\infty )。或者可能存在折中情况,结果是有限的非零数。这种极限称为类型 0 ⋅ ∞ 0 \cdot \infty 0 的不定式。我们可以通过将积 f g fg fg 写为一个商来处理它:

f g = f 1 / g 或 f g = g 1 / f fg = \frac{f}{1/g} \quad \text{或} \quad fg = \frac{g}{1/f} fg=1/gffg=1/fg

这将给定的极限转换为类型 0 0 \frac{0}{0} 00 ∞ ∞ \frac{\infty}{\infty} 的不定式形式,从而可以使用洛必达法则。

例6 计算 lim ⁡ x → 0 + x ln ⁡ x \lim_{{x \to 0^+}} x \ln x limx0+xlnx

给定的极限是不定式,因为当 x → 0 + x \to 0^+ x0+ 时,第一项 x x x 趋近于 0,而第二项 ln ⁡ x \ln x lnx 趋近于 − ∞ -\infty 。将 x = 1 / ( 1 / x ) x = 1/(1/x) x=1/(1/x),我们有 1 / x → ∞ 1/x \to \infty 1/x x → 0 + x \to 0^+ x0+,因此洛必达法则给出:

lim ⁡ x → 0 + x ln ⁡ x = lim ⁡ x → 0 + ln ⁡ x 1 / x = lim ⁡ x → 0 + 1 / x − 1 / x 2 = lim ⁡ x → 0 + ( − x ) = 0 \lim_{{x \to 0^+}} x \ln x = \lim_{{x \to 0^+}} \frac{{\ln x}}{{1/x}} = \lim_{{x \to 0^+}} \frac{{1/x}}{{-1/x^2}} = \lim_{{x \to 0^+}} (-x) = 0 x0+limxlnx=x0+lim1/xlnx=x0+lim1/x21/x=x0+lim(x)=0

例6 计算 lim ⁡ x → 0 + x ln ⁡ x \lim_{{x \to 0^+}} x \ln x limx0+xlnx

给定的极限是不定式,因为当 x → 0 + x \to 0^+ x0+ 时,第一项 x x x 趋近于 0,而第二项 ln ⁡ x \ln x lnx 趋近于 − ∞ -\infty 。将 x = 1 / ( 1 / x ) x = 1/(1/x) x=1/(1/x),我们有 1 / x → ∞ 1/x \to \infty 1/x x → 0 + x \to 0^+ x0+,因此洛必达法则给出:

lim ⁡ x → 0 + x ln ⁡ x = lim ⁡ x → 0 + ln ⁡ x 1 / x = lim ⁡ x → 0 + 1 / x − 1 / x 2 = lim ⁡ x → 0 + ( − x ) = 0 \lim_{{x \to 0^+}} x \ln x = \lim_{{x \to 0^+}} \frac{{\ln x}}{{1/x}} = \lim_{{x \to 0^+}} \frac{{1/x}}{{-1/x^2}} = \lim_{{x \to 0^+}} (-x) = 0 x0+limxlnx=x0+lim1/xlnx=x0+lim1/x21/x=x0+lim(x)=0

注意 在解决例子 6 时,另一种可能的选择是写作:

lim ⁡ x → 0 + x ln ⁡ x = lim ⁡ x → 0 + x 1 / ln ⁡ x \lim_{{x \to 0^+}} x \ln x = \lim_{{x \to 0^+}} \frac{x}{{1/\ln x}} x0+limxlnx=x0+lim1/lnxx

这给出了一个类型为 $ \frac{0}{0} $ 的不定式,但如果我们应用洛必达法则,我们会得到一个比原来更复杂的表达式。通常,当我们重写一个不定式积时,我们尝试选择能够简化极限的选项。

例7 使用洛必达法则帮助绘制函数 f ( x ) = x e x f(x) = xe^x f(x)=xex 的图形。

因为 x x x e x e^x ex 都随着 x → ∞ x \to \infty x 变大,我们有 lim ⁡ x → ∞ x e x = ∞ \lim_{{x \to \infty}} xe^x = \infty limxxex=。然而,当 x → − ∞ x \to -\infty x 时, e x → 0 e^x \to 0 ex0,所以我们有一个需要使用洛必达法则处理的不定型积:

lim ⁡ x → − ∞ x e x = lim ⁡ x → − ∞ x e − x = lim ⁡ x → − ∞ 1 − e − x = lim ⁡ x → − ∞ ( − e x ) = 0 \lim_{{x \to -\infty}} xe^x = \lim_{{x \to -\infty}} \frac{x}{e^{-x}} = \lim_{{x \to -\infty}} \frac{1}{-e^{-x}} = \lim_{{x \to -\infty}} (-e^x) = 0 xlimxex=xlimexx=xlimex1=xlim(ex)=0

因此, x x x 轴是一个水平渐近线。

我们使用第三章中的方法来收集关于图形的其他信息。导数为:

f ’ ( x ) = x e x + e x = ( x + 1 ) e x f’(x) = xe^x + e^x = (x + 1)e^x f(x)=xex+ex=(x+1)ex

由于 e x e^x ex 始终为正,因此当 x + 1 > 0 x + 1 > 0 x+1>0 时, f ’ ( x ) > 0 f’(x) > 0 f(x)>0,而当 x + 1 < 0 x + 1 < 0 x+1<0 时, f ’ ( x ) < 0 f’(x) < 0 f(x)<0。所以 f f f ( − 1 , ∞ ) (-1, \infty) (1,) 上递增,在 ( − ∞ , − 1 ) (-\infty, -1) (,1) 上递减。因为 f ’ ( − 1 ) = 0 f’(-1) = 0 f(1)=0 f ’ f’ f x = − 1 x = -1 x=1 处从负变为正, f ( − 1 ) = − e − 1 ≈ − 0.37 f(-1) = -e^{-1} \approx -0.37 f(1)=e10.37 是一个局部(也是绝对的)最小值。二阶导数为:

f ’’ ( x ) = ( x + 1 ) e x + e x = ( x + 2 ) e x f’’(x) = (x + 1)e^x + e^x = (x + 2)e^x f’’(x)=(x+1)ex+ex=(x+2)ex

由于 f ’’ ( x ) > 0 f’’(x) > 0 f’’(x)>0 x > − 2 x > -2 x>2 f ’’ ( x ) < 0 f’’(x) < 0 f’’(x)<0 x < − 2 x < -2 x<2 f f f ( − 2 , ∞ ) (-2, \infty) (2,) 上是向上凹的,在 ( − ∞ , − 2 ) (-\infty, -2) (,2) 上是向下凹的。拐点为 ( − 2 , − 2 e − 2 ) ≈ ( − 2 , − 0.27 ) (-2, -2e^{-2}) \approx (-2, -0.27) (2,2e2)(2,0.27)

我们使用这些信息来绘制图 6 中的曲线。

在这里插入图片描述

不定型差

如果 lim ⁡ x → a f ( x ) = ∞ \lim_{{x \to a}} f(x) = \infty limxaf(x)= lim ⁡ x → a g ( x ) = ∞ \lim_{{x \to a}} g(x) = \infty limxag(x)=,那么极限

lim ⁡ x → a [ f ( x ) − g ( x ) ] \lim_{{x \to a}} [f(x) - g(x)] xalim[f(x)g(x)]

被称为类型 ∞ − ∞ \infty - \infty 的不定式。再一次, f f f g g g 之间存在竞争。答案会是 ∞ \infty f f f 占上风)还是 − ∞ -\infty g g g 占上风),或者他们是否会折中得到一个有限的数字?为了找出答案,我们尝试将差转化为商(例如,使用公分母、理性化或提取公因子)以得到类型 0 0 \frac{0}{0} 00 ∞ ∞ \frac{\infty}{\infty} 的不定式形式。

例8 计算 lim ⁡ x → ( π / 2 ) − ( sec ⁡ x − tan ⁡ x ) \lim_{{x \to (\pi/2)^-}} (\sec x - \tan x) limx(π/2)(secxtanx)

首先注意到当 x → ( π / 2 ) − x \to (\pi/2)^- x(π/2) 时, sec ⁡ x → ∞ \sec x \to \infty secx tan ⁡ x → ∞ \tan x \to \infty tanx,所以这个极限是不定式。这里我们使用公分母:

lim ⁡ x → ( π / 2 ) − ( sec ⁡ x − tan ⁡ x ) = lim ⁡ x → ( π / 2 ) − ( 1 cos ⁡ x − sin ⁡ x cos ⁡ x ) \lim_{{x \to (\pi/2)^-}} (\sec x - \tan x) = \lim_{{x \to (\pi/2)^-}} \left( \frac{1}{\cos x} - \frac{\sin x}{\cos x} \right) x(π/2)lim(secxtanx)=x(π/2)lim(cosx1cosxsinx)

= lim ⁡ x → ( π / 2 ) − 1 − sin ⁡ x cos ⁡ x = lim ⁡ x → ( π / 2 ) − − cos ⁡ x − sin ⁡ x = 0 = \lim_{{x \to (\pi/2)^-}} \frac{1 - \sin x}{\cos x} = \lim_{{x \to (\pi/2)^-}} \frac{-\cos x}{-\sin x} = 0 =x(π/2)limcosx1sinx=x(π/2)limsinxcosx=0

注意,这里洛必达法则的使用是合理的,因为 1 − sin ⁡ x → 0 1 - \sin x \to 0 1sinx0 cos ⁡ x → 0 \cos x \to 0 cosx0 x → ( π / 2 ) − x \to (\pi/2)^- x(π/2)

不定型幂

从极限

lim ⁡ x → a [ f ( x ) ] g ( x ) \lim_{{x \to a}} [f(x)]^{g(x)} xalim[f(x)]g(x)

中产生了几种不定式形式:

  • lim ⁡ x → a f ( x ) = 0 \lim_{{x \to a}} f(x) = 0 limxaf(x)=0 lim ⁡ x → a g ( x ) = 0 \lim_{{x \to a}} g(x) = 0 limxag(x)=0 类型 0 0 0^0 00
  • lim ⁡ x → a f ( x ) = ∞ \lim_{{x \to a}} f(x) = \infty limxaf(x)= lim ⁡ x → a g ( x ) = 0 \lim_{{x \to a}} g(x) = 0 limxag(x)=0 类型 ∞ 0 \infty^0 0
  • lim ⁡ x → a f ( x ) = 1 \lim_{{x \to a}} f(x) = 1 limxaf(x)=1 lim ⁡ x → a g ( x ) = ± ∞ \lim_{{x \to a}} g(x) = \pm \infty limxag(x)=± 类型 1 ∞ 1^\infty 1

每种情况都可以通过取自然对数处理:

y = [ f ( x ) ] g ( x ) y = [f(x)]^{g(x)} y=[f(x)]g(x),则 ln ⁡ y = g ( x ) ln ⁡ f ( x ) \ln y = g(x) \ln f(x) lny=g(x)lnf(x)

或者通过将函数写成指数形式:

[ f ( x ) ] g ( x ) = e g ( x ) ln ⁡ f ( x ) [f(x)]^{g(x)} = e^{g(x) \ln f(x)} [f(x)]g(x)=eg(x)lnf(x)

(回想一下,这两种方法都用于对这种函数求导。)无论使用哪种方法,我们都会得到类型为 0 ⋅ ∞ 0 \cdot \infty 0 的不定式积 g ( x ) ln ⁡ f ( x ) g(x) \ln f(x) g(x)lnf(x)

例9 计算 lim ⁡ x → 0 + ( 1 + sin ⁡ 4 x ) cot ⁡ x \lim_{{x \to 0^+}} (1 + \sin 4x)^{\cot x} limx0+(1+sin4x)cotx

首先注意,当 x → 0 + x \to 0^+ x0+ 时,我们有 1 + sin ⁡ 4 x → 1 1 + \sin 4x \to 1 1+sin4x1 cot ⁡ x → ∞ \cot x \to \infty cotx,因此给定的极限是不定式(类型 1 ∞ 1^\infty 1)。设

y = ( 1 + sin ⁡ 4 x ) cot ⁡ x y = (1 + \sin 4x)^{\cot x} y=(1+sin4x)cotx

ln ⁡ y = ln ⁡ [ ( 1 + sin ⁡ 4 x ) cot ⁡ x ] = cot ⁡ x ln ⁡ ( 1 + sin ⁡ 4 x ) = ln ⁡ ( 1 + sin ⁡ 4 x ) tan ⁡ x \ln y = \ln[(1 + \sin 4x)^{\cot x}] = \cot x \ln(1 + \sin 4x) = \frac{\ln(1 + \sin 4x)}{\tan x} lny=ln[(1+sin4x)cotx]=cotxln(1+sin4x)=tanxln(1+sin4x)

所以洛必达法则给出:

lim ⁡ x → 0 + ln ⁡ y = lim ⁡ x → 0 + ln ⁡ ( 1 + sin ⁡ 4 x ) tan ⁡ x = lim ⁡ x → 0 + 4 cos ⁡ 4 x 1 + sin ⁡ 4 x ⋅ 1 sec ⁡ 2 x = 4 \lim_{{x \to 0^+}} \ln y = \lim_{{x \to 0^+}} \frac{\ln(1 + \sin 4x)}{\tan x} = \lim_{{x \to 0^+}} \frac{4 \cos 4x}{1 + \sin 4x} \cdot \frac{1}{\sec^2 x} = 4 x0+limlny=x0+limtanxln(1+sin4x)=x0+lim1+sin4x4cos4xsec2x1=4

到目前为止,我们已经计算了 ln ⁡ y \ln y lny 的极限,但我们需要的是 y y y 的极限。为此,我们利用 y = e ln ⁡ y y = e^{\ln y} y=elny

lim ⁡ x → 0 + ( 1 + sin ⁡ 4 x ) cot ⁡ x = lim ⁡ x → 0 + y = lim ⁡ x → 0 + e ln ⁡ y = e 4 \lim_{{x \to 0^+}} (1 + \sin 4x)^{\cot x} = \lim_{{x \to 0^+}} y = \lim_{{x \to 0^+}} e^{\ln y} = e^4 x0+lim(1+sin4x)cotx=x0+limy=x0+limelny=e4

例10 lim ⁡ x → 0 + x x \lim_{{x \to 0^+}} x^x limx0+xx

注意到这个极限是不定式,因为 0 x = 0 0^x = 0 0x=0 对于任何 x > 0 x > 0 x>0 x 0 = 1 x^0 = 1 x0=1 对于任何 x ≠ 0 x \neq 0 x=0。(回想一下, 0 0 0^0 00 是未定义的。)我们可以像例子 9 一样进行处理,或者将该函数写作指数形式:

x x = ( e ln ⁡ x ) x = e x ln ⁡ x x^x = (e^{\ln x})^x = e^{x \ln x} xx=(elnx)x=exlnx

在例子 6 中,我们使用洛必达法则证明了

lim ⁡ x → 0 + x ln ⁡ x = 0 \lim_{{x \to 0^+}} x \ln x = 0 x0+limxlnx=0

因此,

lim ⁡ x → 0 + x x = lim ⁡ x → 0 + e x ln ⁡ x = e 0 = 1 \lim_{{x \to 0^+}} x^x = \lim_{{x \to 0^+}} e^{x \ln x} = e^0 = 1 x0+limxx=x0+limexlnx=e0=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值