洛必达法则指出,对于可导的函数 f f f 和 g g g,如果:
lim x → a f ( x ) = 0 and lim x → a g ( x ) = 0 \lim_{x \to a} f(x) = 0 \text{ and } \lim_{x \to a} g(x) = 0 x→alimf(x)=0 and x→alimg(x)=0
或
lim x → a f ( x ) = ± ∞ and lim x → a g ( x ) = ± ∞ \lim_{x \to a} f(x) = \pm \infty \text{ and } \lim_{x \to a} g(x) = \pm \infty x→alimf(x)=±∞ and x→alimg(x)=±∞
并且 g ’ ( x ) ≠ 0 g’(x) \neq 0 g’(x)=0 在包含 a a a 的开放区间上成立,那么:
lim x → a f ( x ) g ( x ) = lim x → a f ’ ( x ) g ’ ( x ) \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f’(x)}{g’(x)} x→alimg(x)f(x)=x→alimg’(x)f’(x)
例1 求 lim x → 1 ln x x − 1 \lim_{{x \to 1}} \frac{{\ln x}}{{x - 1}} limx→1x−1lnx。
解 因为
lim x → 1 ln x = ln 1 = 0 \lim_{{x \to 1}} \ln x = \ln 1 = 0 limx→1lnx=ln1=0, 且 lim x → 1 ( x − 1 ) = 0 \lim_{{x \to 1}} (x - 1) = 0 limx→1(x−1)=0,
所以该极限是 0 0 \frac{0}{0} 00 形式的不定式,因此我们可以应用洛必达法则:
lim x → 1 ln x x − 1 = lim x → 1 d d x ( ln x ) d d x ( x − 1 ) = lim x → 1 1 / x 1 = lim x → 1 1 x = 1 \lim_{{x \to 1}} \frac{{\ln x}}{{x - 1}} = \lim_{{x \to 1}} \frac{{\frac{d}{dx} (\ln x)}}{{\frac{d}{dx} (x - 1)}} = \lim_{{x \to 1}} \frac{{1/x}}{{1}} = \lim_{{x \to 1}} \frac{1}{x} = 1 limx→1x−1lnx=limx→1dxd(x−1)dxd(lnx)=limx→111/x=limx→1x1=1
例2 计算 lim x → ∞ e x x 2 \lim_{{x \to \infty}} \frac{{e^x}}{{x^2}} limx→∞x2ex。
解 我们有 lim x → ∞ e x = ∞ \lim_{{x \to \infty}} e^x = \infty limx→∞ex=∞ 且 lim x → ∞ x 2 = ∞ \lim_{{x \to \infty}} x^2 = \infty limx→∞x2=∞,所以极限是 ∞ ∞ \frac{\infty}{\infty} ∞∞ 形式的不定式,应用洛必达法则给出
lim x → ∞ e x x 2 = lim x → ∞ d d x ( e x ) d d x ( x 2 ) = lim x → ∞ e x 2 x \lim_{{x \to \infty}} \frac{{e^x}}{{x^2}} = \lim_{{x \to \infty}} \frac{{\frac{d}{dx} (e^x)}}{{\frac{d}{dx} (x^2)}} = \lim_{{x \to \infty}} \frac{{e^x}}{{2x}} x→∞limx2ex=x→∞limdxd(x2)dxd(ex)=x→∞lim2xex
因为 e x → ∞ e^x \to \infty ex→∞ 且 2 x → ∞ 2x \to \infty 2x→∞ 当 x → ∞ x \to \infty x→∞ 时,右侧的极限也是不定式,但是再次应用洛必达法则给出
lim x → ∞ e x x 2 = lim x → ∞ e x 2 x = lim x → ∞ e x 2 = ∞ \lim_{{x \to \infty}} \frac{{e^x}}{{x^2}} = \lim_{{x \to \infty}} \frac{{e^x}}{{2x}} = \lim_{{x \to \infty}} \frac{{e^x}}{2} = \infty x→∞limx2ex=x→∞lim2xex=x→∞lim2ex=∞
例3 计算 lim x → ∞ ln x x 3 \lim_{{x \to \infty}} \frac{{\ln x}}{{\sqrt[3]{x}}} limx→∞3xlnx。
解 由于 ln x → ∞ \ln x \to \infty lnx→∞ 且 x 3 → ∞ \sqrt[3]{x} \to \infty 3x→∞ 当 x → ∞ x \to \infty x→∞ 时,可以应用洛必达法则:
lim x → ∞ ln x x 3 = lim x → ∞ 1 / x 1 3 x − 2 / 3 \lim_{{x \to \infty}} \frac{{\ln x}}{{\sqrt[3]{x}}} = \lim_{{x \to \infty}} \frac{{1/x}}{{\frac{1}{3}x^{-2/3}}} x→∞lim3xlnx=x→∞lim31x−2/31/x
注意,右侧的极限现在是 0 0 \frac{0}{0} 00 形式的不定式。但我们不需要像例子 2 中那样再次应用洛必达法则,简化表达式后可以看到第二次应用是不必要的:
lim x → ∞ ln x x 3 = lim x → ∞ 1 / x 1 3 x − 2 / 3 = lim x → ∞ 3 x 3 = 0 \lim_{{x \to \infty}} \frac{{\ln x}}{{\sqrt[3]{x}}} = \lim_{{x \to \infty}} \frac{{1/x}}{{\frac{1}{3}x^{-2/3}}} = \lim_{{x \to \infty}} \frac{3}{{\sqrt[3]{x}}} = 0 x→∞lim3xlnx=x→∞lim31x−2/31/x=x→∞lim3x3=0
例4 求 lim x → 0 tan x − x x 3 \lim_{{x \to 0}} \frac{{\tan x - x}}{{x^3}} limx→0x3tanx−x。(参见练习 1.5.44)
解 注意到 tan x − x → 0 \tan x - x \to 0 tanx−x→0 且 x 3 → 0 x^3 \to 0 x3→0 当 x → 0 x \to 0 x→0 时,我们使用洛必达法则:
lim x → 0 tan x − x x 3 = lim x → 0 sec 2 x − 1 3 x 2 \lim_{{x \to 0}} \frac{{\tan x - x}}{{x^3}} = \lim_{{x \to 0}} \frac{{\sec^2 x - 1}}{{3x^2}} x→0limx3tanx−x=x→0lim3x2sec2x−1
由于右侧的极限仍然是 0 0 \frac{0}{0} 00 形式的不定式,我们再次应用洛必达法则:
lim x → 0 sec 2 x − 1 3 x 2 = lim x → 0 2 sec 2 x tan x 6 x \lim_{{x \to 0}} \frac{{\sec^2 x - 1}}{{3x^2}} = \lim_{{x \to 0}} \frac{{2 \sec^2 x \tan x}}{{6x}} x→0lim3x2sec2x−1=x→0lim6x2sec2xtanx
因为 lim x → 0 sec 2 x = 1 \lim_{{x \to 0}} \sec^2 x = 1 limx→0sec2x=1,我们简化计算如下:
lim x → 0 2 sec 2 x tan x 6 x = 1 3 lim x → 0 sec 2 x ⋅ lim x → 0 tan x x = 1 3 lim x → 0 tan x x \lim_{{x \to 0}} \frac{{2 \sec^2 x \tan x}}{{6x}} = \frac{1}{3} \lim_{{x \to 0}} \sec^2 x \cdot \lim_{{x \to 0}} \frac{{\tan x}}{x} = \frac{1}{3} \lim_{{x \to 0}} \frac{{\tan x}}{x} x→0lim6x2sec2xtanx=31x→0limsec2x⋅x→0limxtanx=31x→0limxtanx
我们可以通过第三次应用洛必达法则或将 tan x \tan x tanx 写作 sin x cos x \frac{{\sin x}}{{\cos x}} cosxsinx 并使用三角函数极限的知识来计算这个极限。将所有步骤结合起来,我们得到:
lim x → 0 tan x − x x 3 = lim x → 0 sec 2 x − 1 3 x 2 = lim x → 0 2 sec 2 x tan x 6 x = 1 3 lim x → 0 tan x x = 1 3 ⋅ 1 = 1 3 \lim_{{x \to 0}} \frac{{\tan x - x}}{{x^3}} = \lim_{{x \to 0}} \frac{{\sec^2 x - 1}}{{3x^2}} = \lim_{{x \to 0}} \frac{{2 \sec^2 x \tan x}}{{6x}} = \frac{1}{3} \lim_{{x \to 0}} \frac{{\tan x}}{x} = \frac{1}{3} \cdot 1 = \frac{1}{3} x→0limx3tanx−x=x→0lim3x2sec2x−1=x→0lim6x2sec2xtanx=31x→0limxtanx=31⋅1=31
例5 求 lim x → π − sin x 1 − cos x \lim_{{x \to \pi^-}} \frac{{\sin x}}{{1 - \cos x}} limx→π−1−cosxsinx。
解 如果我们盲目地尝试使用洛必达法则,我们会得到
lim x → π − sin x 1 − cos x = lim x → π − cos x − sin x = − ∞ \lim_{{x \to \pi^-}} \frac{{\sin x}}{{1 - \cos x}} = \lim_{{x \to \pi^-}} \frac{{\cos x}}{{-\sin x}} = -\infty x→π−lim1−cosxsinx=x→π−lim−sinxcosx=−∞
这是错误的!尽管 sin x → 0 \sin x \to 0 sinx→0 当 x → π − x \to \pi^- x→π− 时,注意到分母 1 − cos x 1 - \cos x 1−cosx 并没有趋近于 0,因此在此处无法应用洛必达法则。
实际上,这个极限很容易找到,因为该函数在 π \pi π 处是连续的,并且此时分母不为零:
lim x → π − sin x 1 − cos x = sin π 1 − cos π = 0 1 − ( − 1 ) = 0 \lim_{{x \to \pi^-}} \frac{{\sin x}}{{1 - \cos x}} = \frac{{\sin \pi}}{{1 - \cos \pi}} = \frac{0}{{1 - (-1)}} = 0 x→π−lim1−cosxsinx=1−cosπsinπ=1−(−1)0=0
例子 5 展示了如果在没有思考的情况下使用洛必达法则可能会出错。其他极限可以通过洛必达法则找到,但使用其他方法更容易找到。因此,在求任意极限时,你应该在使用洛必达法则之前考虑其他方法。
不定型积
如果 lim x → a f ( x ) = 0 \lim_{{x \to a}} f(x) = 0 limx→af(x)=0 且 lim x → a g ( x ) = ∞ \lim_{{x \to a}} g(x) = \infty limx→ag(x)=∞(或 − ∞ -\infty −∞),那么 lim x → a [ f ( x ) g ( x ) ] \lim_{{x \to a}} [f(x)g(x)] limx→a[f(x)g(x)] 的值并不明确。 f f f 和 g g g 之间存在竞争。如果 f f f 占上风,答案将是 0 0 0;如果 g g g 占上风,答案将是 ∞ \infty ∞(或 − ∞ -\infty −∞)。或者可能存在折中情况,结果是有限的非零数。这种极限称为类型 0 ⋅ ∞ 0 \cdot \infty 0⋅∞ 的不定式。我们可以通过将积 f g fg fg 写为一个商来处理它:
f g = f 1 / g 或 f g = g 1 / f fg = \frac{f}{1/g} \quad \text{或} \quad fg = \frac{g}{1/f} fg=1/gf或fg=1/fg
这将给定的极限转换为类型 0 0 \frac{0}{0} 00 或 ∞ ∞ \frac{\infty}{\infty} ∞∞ 的不定式形式,从而可以使用洛必达法则。
例6 计算 lim x → 0 + x ln x \lim_{{x \to 0^+}} x \ln x limx→0+xlnx。
解 给定的极限是不定式,因为当 x → 0 + x \to 0^+ x→0+ 时,第一项 x x x 趋近于 0,而第二项 ln x \ln x lnx 趋近于 − ∞ -\infty −∞。将 x = 1 / ( 1 / x ) x = 1/(1/x) x=1/(1/x),我们有 1 / x → ∞ 1/x \to \infty 1/x→∞ 当 x → 0 + x \to 0^+ x→0+,因此洛必达法则给出:
lim x → 0 + x ln x = lim x → 0 + ln x 1 / x = lim x → 0 + 1 / x − 1 / x 2 = lim x → 0 + ( − x ) = 0 \lim_{{x \to 0^+}} x \ln x = \lim_{{x \to 0^+}} \frac{{\ln x}}{{1/x}} = \lim_{{x \to 0^+}} \frac{{1/x}}{{-1/x^2}} = \lim_{{x \to 0^+}} (-x) = 0 x→0+limxlnx=x→0+lim1/xlnx=x→0+lim−1/x21/x=x→0+lim(−x)=0
例6 计算 lim x → 0 + x ln x \lim_{{x \to 0^+}} x \ln x limx→0+xlnx。
解 给定的极限是不定式,因为当 x → 0 + x \to 0^+ x→0+ 时,第一项 x x x 趋近于 0,而第二项 ln x \ln x lnx 趋近于 − ∞ -\infty −∞。将 x = 1 / ( 1 / x ) x = 1/(1/x) x=1/(1/x),我们有 1 / x → ∞ 1/x \to \infty 1/x→∞ 当 x → 0 + x \to 0^+ x→0+,因此洛必达法则给出:
lim x → 0 + x ln x = lim x → 0 + ln x 1 / x = lim x → 0 + 1 / x − 1 / x 2 = lim x → 0 + ( − x ) = 0 \lim_{{x \to 0^+}} x \ln x = \lim_{{x \to 0^+}} \frac{{\ln x}}{{1/x}} = \lim_{{x \to 0^+}} \frac{{1/x}}{{-1/x^2}} = \lim_{{x \to 0^+}} (-x) = 0 x→0+limxlnx=x→0+lim1/xlnx=x→0+lim−1/x21/x=x→0+lim(−x)=0
注意 在解决例子 6 时,另一种可能的选择是写作:
lim x → 0 + x ln x = lim x → 0 + x 1 / ln x \lim_{{x \to 0^+}} x \ln x = \lim_{{x \to 0^+}} \frac{x}{{1/\ln x}} x→0+limxlnx=x→0+lim1/lnxx
这给出了一个类型为 $ \frac{0}{0} $ 的不定式,但如果我们应用洛必达法则,我们会得到一个比原来更复杂的表达式。通常,当我们重写一个不定式积时,我们尝试选择能够简化极限的选项。
例7 使用洛必达法则帮助绘制函数 f ( x ) = x e x f(x) = xe^x f(x)=xex 的图形。
解 因为 x x x 和 e x e^x ex 都随着 x → ∞ x \to \infty x→∞ 变大,我们有 lim x → ∞ x e x = ∞ \lim_{{x \to \infty}} xe^x = \infty limx→∞xex=∞。然而,当 x → − ∞ x \to -\infty x→−∞ 时, e x → 0 e^x \to 0 ex→0,所以我们有一个需要使用洛必达法则处理的不定型积:
lim x → − ∞ x e x = lim x → − ∞ x e − x = lim x → − ∞ 1 − e − x = lim x → − ∞ ( − e x ) = 0 \lim_{{x \to -\infty}} xe^x = \lim_{{x \to -\infty}} \frac{x}{e^{-x}} = \lim_{{x \to -\infty}} \frac{1}{-e^{-x}} = \lim_{{x \to -\infty}} (-e^x) = 0 x→−∞limxex=x→−∞lime−xx=x→−∞lim−e−x1=x→−∞lim(−ex)=0
因此, x x x 轴是一个水平渐近线。
我们使用第三章中的方法来收集关于图形的其他信息。导数为:
f ’ ( x ) = x e x + e x = ( x + 1 ) e x f’(x) = xe^x + e^x = (x + 1)e^x f’(x)=xex+ex=(x+1)ex
由于 e x e^x ex 始终为正,因此当 x + 1 > 0 x + 1 > 0 x+1>0 时, f ’ ( x ) > 0 f’(x) > 0 f’(x)>0,而当 x + 1 < 0 x + 1 < 0 x+1<0 时, f ’ ( x ) < 0 f’(x) < 0 f’(x)<0。所以 f f f 在 ( − 1 , ∞ ) (-1, \infty) (−1,∞) 上递增,在 ( − ∞ , − 1 ) (-\infty, -1) (−∞,−1) 上递减。因为 f ’ ( − 1 ) = 0 f’(-1) = 0 f’(−1)=0 且 f ’ f’ f’ 在 x = − 1 x = -1 x=−1 处从负变为正, f ( − 1 ) = − e − 1 ≈ − 0.37 f(-1) = -e^{-1} \approx -0.37 f(−1)=−e−1≈−0.37 是一个局部(也是绝对的)最小值。二阶导数为:
f ’’ ( x ) = ( x + 1 ) e x + e x = ( x + 2 ) e x f’’(x) = (x + 1)e^x + e^x = (x + 2)e^x f’’(x)=(x+1)ex+ex=(x+2)ex
由于 f ’’ ( x ) > 0 f’’(x) > 0 f’’(x)>0 当 x > − 2 x > -2 x>−2 且 f ’’ ( x ) < 0 f’’(x) < 0 f’’(x)<0 当 x < − 2 x < -2 x<−2, f f f 在 ( − 2 , ∞ ) (-2, \infty) (−2,∞) 上是向上凹的,在 ( − ∞ , − 2 ) (-\infty, -2) (−∞,−2) 上是向下凹的。拐点为 ( − 2 , − 2 e − 2 ) ≈ ( − 2 , − 0.27 ) (-2, -2e^{-2}) \approx (-2, -0.27) (−2,−2e−2)≈(−2,−0.27)。
我们使用这些信息来绘制图 6 中的曲线。
不定型差
如果 lim x → a f ( x ) = ∞ \lim_{{x \to a}} f(x) = \infty limx→af(x)=∞ 且 lim x → a g ( x ) = ∞ \lim_{{x \to a}} g(x) = \infty limx→ag(x)=∞,那么极限
lim x → a [ f ( x ) − g ( x ) ] \lim_{{x \to a}} [f(x) - g(x)] x→alim[f(x)−g(x)]
被称为类型 ∞ − ∞ \infty - \infty ∞−∞ 的不定式。再一次, f f f 和 g g g 之间存在竞争。答案会是 ∞ \infty ∞( f f f 占上风)还是 − ∞ -\infty −∞( g g g 占上风),或者他们是否会折中得到一个有限的数字?为了找出答案,我们尝试将差转化为商(例如,使用公分母、理性化或提取公因子)以得到类型 0 0 \frac{0}{0} 00 或 ∞ ∞ \frac{\infty}{\infty} ∞∞ 的不定式形式。
例8 计算 lim x → ( π / 2 ) − ( sec x − tan x ) \lim_{{x \to (\pi/2)^-}} (\sec x - \tan x) limx→(π/2)−(secx−tanx)。
解 首先注意到当 x → ( π / 2 ) − x \to (\pi/2)^- x→(π/2)− 时, sec x → ∞ \sec x \to \infty secx→∞ 且 tan x → ∞ \tan x \to \infty tanx→∞,所以这个极限是不定式。这里我们使用公分母:
lim x → ( π / 2 ) − ( sec x − tan x ) = lim x → ( π / 2 ) − ( 1 cos x − sin x cos x ) \lim_{{x \to (\pi/2)^-}} (\sec x - \tan x) = \lim_{{x \to (\pi/2)^-}} \left( \frac{1}{\cos x} - \frac{\sin x}{\cos x} \right) x→(π/2)−lim(secx−tanx)=x→(π/2)−lim(cosx1−cosxsinx)
= lim x → ( π / 2 ) − 1 − sin x cos x = lim x → ( π / 2 ) − − cos x − sin x = 0 = \lim_{{x \to (\pi/2)^-}} \frac{1 - \sin x}{\cos x} = \lim_{{x \to (\pi/2)^-}} \frac{-\cos x}{-\sin x} = 0 =x→(π/2)−limcosx1−sinx=x→(π/2)−lim−sinx−cosx=0
注意,这里洛必达法则的使用是合理的,因为 1 − sin x → 0 1 - \sin x \to 0 1−sinx→0 且 cos x → 0 \cos x \to 0 cosx→0 当 x → ( π / 2 ) − x \to (\pi/2)^- x→(π/2)−。
不定型幂
从极限
lim x → a [ f ( x ) ] g ( x ) \lim_{{x \to a}} [f(x)]^{g(x)} x→alim[f(x)]g(x)
中产生了几种不定式形式:
- lim x → a f ( x ) = 0 \lim_{{x \to a}} f(x) = 0 limx→af(x)=0 且 lim x → a g ( x ) = 0 \lim_{{x \to a}} g(x) = 0 limx→ag(x)=0 类型 0 0 0^0 00
- lim x → a f ( x ) = ∞ \lim_{{x \to a}} f(x) = \infty limx→af(x)=∞ 且 lim x → a g ( x ) = 0 \lim_{{x \to a}} g(x) = 0 limx→ag(x)=0 类型 ∞ 0 \infty^0 ∞0
- lim x → a f ( x ) = 1 \lim_{{x \to a}} f(x) = 1 limx→af(x)=1 且 lim x → a g ( x ) = ± ∞ \lim_{{x \to a}} g(x) = \pm \infty limx→ag(x)=±∞ 类型 1 ∞ 1^\infty 1∞
每种情况都可以通过取自然对数处理:
设 y = [ f ( x ) ] g ( x ) y = [f(x)]^{g(x)} y=[f(x)]g(x),则 ln y = g ( x ) ln f ( x ) \ln y = g(x) \ln f(x) lny=g(x)lnf(x)
或者通过将函数写成指数形式:
[ f ( x ) ] g ( x ) = e g ( x ) ln f ( x ) [f(x)]^{g(x)} = e^{g(x) \ln f(x)} [f(x)]g(x)=eg(x)lnf(x)
(回想一下,这两种方法都用于对这种函数求导。)无论使用哪种方法,我们都会得到类型为 0 ⋅ ∞ 0 \cdot \infty 0⋅∞ 的不定式积 g ( x ) ln f ( x ) g(x) \ln f(x) g(x)lnf(x)。
例9 计算 lim x → 0 + ( 1 + sin 4 x ) cot x \lim_{{x \to 0^+}} (1 + \sin 4x)^{\cot x} limx→0+(1+sin4x)cotx。
解 首先注意,当 x → 0 + x \to 0^+ x→0+ 时,我们有 1 + sin 4 x → 1 1 + \sin 4x \to 1 1+sin4x→1 且 cot x → ∞ \cot x \to \infty cotx→∞,因此给定的极限是不定式(类型 1 ∞ 1^\infty 1∞)。设
y = ( 1 + sin 4 x ) cot x y = (1 + \sin 4x)^{\cot x} y=(1+sin4x)cotx
则
ln y = ln [ ( 1 + sin 4 x ) cot x ] = cot x ln ( 1 + sin 4 x ) = ln ( 1 + sin 4 x ) tan x \ln y = \ln[(1 + \sin 4x)^{\cot x}] = \cot x \ln(1 + \sin 4x) = \frac{\ln(1 + \sin 4x)}{\tan x} lny=ln[(1+sin4x)cotx]=cotxln(1+sin4x)=tanxln(1+sin4x)
所以洛必达法则给出:
lim x → 0 + ln y = lim x → 0 + ln ( 1 + sin 4 x ) tan x = lim x → 0 + 4 cos 4 x 1 + sin 4 x ⋅ 1 sec 2 x = 4 \lim_{{x \to 0^+}} \ln y = \lim_{{x \to 0^+}} \frac{\ln(1 + \sin 4x)}{\tan x} = \lim_{{x \to 0^+}} \frac{4 \cos 4x}{1 + \sin 4x} \cdot \frac{1}{\sec^2 x} = 4 x→0+limlny=x→0+limtanxln(1+sin4x)=x→0+lim1+sin4x4cos4x⋅sec2x1=4
到目前为止,我们已经计算了 ln y \ln y lny 的极限,但我们需要的是 y y y 的极限。为此,我们利用 y = e ln y y = e^{\ln y} y=elny:
lim x → 0 + ( 1 + sin 4 x ) cot x = lim x → 0 + y = lim x → 0 + e ln y = e 4 \lim_{{x \to 0^+}} (1 + \sin 4x)^{\cot x} = \lim_{{x \to 0^+}} y = \lim_{{x \to 0^+}} e^{\ln y} = e^4 x→0+lim(1+sin4x)cotx=x→0+limy=x→0+limelny=e4
例10 求 lim x → 0 + x x \lim_{{x \to 0^+}} x^x limx→0+xx。
解 注意到这个极限是不定式,因为 0 x = 0 0^x = 0 0x=0 对于任何 x > 0 x > 0 x>0 而 x 0 = 1 x^0 = 1 x0=1 对于任何 x ≠ 0 x \neq 0 x=0。(回想一下, 0 0 0^0 00 是未定义的。)我们可以像例子 9 一样进行处理,或者将该函数写作指数形式:
x x = ( e ln x ) x = e x ln x x^x = (e^{\ln x})^x = e^{x \ln x} xx=(elnx)x=exlnx
在例子 6 中,我们使用洛必达法则证明了
lim x → 0 + x ln x = 0 \lim_{{x \to 0^+}} x \ln x = 0 x→0+limxlnx=0
因此,
lim x → 0 + x x = lim x → 0 + e x ln x = e 0 = 1 \lim_{{x \to 0^+}} x^x = \lim_{{x \to 0^+}} e^{x \ln x} = e^0 = 1 x→0+limxx=x→0+limexlnx=e0=1