【ROS机器人系统】自主导航+YOLO目标检测+语音播报

该博客详细介绍了如何在ROS机器人系统中实现自主导航、YOLO目标检测以及结合科大讯飞的语音播报功能。通过场景搭建、建图与导航模块,YOLO模块的配置,以及语音合成模块的集成,实现机器人在移动过程中对周围物体的识别和语音反馈。读者可以获取到完整的虚拟机环境和源码进行学习。
摘要由CSDN通过智能技术生成

注意事项:

实验的过程中遇到了许多的bug和问题,例如:

  • YOLO模块检测物体的时候检测框的左上角不出现文字(后来发现是缺少labels文件);
  • gazebo打开的时候可能会崩溃(后来发现是虚拟机的问题,需要关闭vmware的3D图形加速选项);
  • 关闭gazebo的时候尽量使用ctrl+C去关闭,直接关闭窗口可能不能完全关闭gazebo的全部进程(此时需要重启);
  • 使用语音模块去订阅YOLO模块发送的消息的时候要处理好/darknet_ros/bounding boxes话题信息,在回调函数中提取其中的识别结果。
  • 安装ros可参考:
    Ubuntu18.04上安装ROS的详细教程
    Ubuntu18.04安装Ros(最新最详细亲测)
  • 本文末尾有源码 和 虚拟机环境(可复制克隆)

一、总体功能设计

完成自主导航功能,并在小车移动至指定地点的过

ROS YOLO检测映射在点云中是一种技术,它将YOLO目标检测算法应用于ROS(Robot Operating System)平台,并将检测的结果映射到点云数据中。 首先,YOLO(You Only Look Once)是一种实时目标检测算法,可以从图像或视频中检测多个物体并定位它们的边界框。这个算法通过将输入图像划分为较小的网格单元,每个单元负责检测其中包含的物体。YOLO算法速度快,适用于实时应用场景。 其次,ROS是一种用于机器人系统开发的软件平台,它提供了一套工具、库和约定,用于创建机器人软件和控制机器人硬件。ROS具有分布式计算能力和丰富的功能包,可应用于各种机器人应用领域。 将YOLO检测与ROS的结合,意味着将YOLO算法应用于ROS平台上的机器人系统中。例如,机器人可能配备了一台摄像头或激光雷达(如Velodyne),用于捕捉环境中的图像或点云数据。 在ROS中,可以使用YOLO算法对这些图像或点云数据进行目标检测。检测的结果可以是物体的类别(如人、车辆、交通标志)和边界框信息(位置和大小)。 当将检测结果映射到点云数据中时,可以将检测到的物体的边界框在点云中进行可视化,以实现对物体的空间定位。这样,在机器人的决策和规划过程中就能更好地利用物体的位置信息。 总之,ROS YOLO检测映射在点云中是一种将YOLO目标检测算法应用于ROS平台,并将检测结果映射到点云数据的技术。它使机器人能够识别和定位环境中的物体,从而为机器人的感知和决策提供支持。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

~柠月如风~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值