YOLO系列学习——V4

1.改进之处:

    集百家之所长,很多细节之处

2.数据增强方面改进:

BOF:只增加了训练成本,将数据进行处理,但是测试是正常的测试,如:调整图像的对比度、亮度、旋转等等

1.马赛克的数据增强(Mosaic data augmentation)

2.Dropblock:

       之前的dropout是随机的杀死一些选择点,现在的dropblock是吃掉一个区域,增加难度

标签平滑(label Smoothing):

3.神经网络最大的缺点:过拟合    解决办法

       比如让原来的标签【0,1】变成【0.05,0.95】

使用之后,会使得之后的效果:族内更加紧密,族间更加分离

左图为使用之前,右图为之后,可以看得出分类会更加明确

4.损失函数的选择过程:

 1.GIOU损失:

     引入了一个最下的封闭框C,C可以把A,B包含在内

新的损失函数:

当目标框和检测框越接近,后边的式子就越接近于0,当差的很远iou=0时也能继续训练下去

2.DIOU损失:

  

    其中ρ^2表示的是欧氏距离,整个公式后边的表示:目标框与预测框中心点之间的欧氏距离,

表示的时最小封闭框的对角线的平方,图示如下:

使用DIOU会使得优化的过程更加直接

可以看出区别,使用了DIOU会使得目标框与检测框更加的易于去判断

3.CIOU:

损失函数必须考虑的三个几何因素:重叠面积(IOU)、中心点距离、长宽比

以下的这个新的损失函数就包含了这三点:

5.如何将多余重复的检测框去除:

1.NMS:

       所做的就是,先利用置信度相对较高的框去和其他的框去做IOU,把IOU值较大的这些框(也就是所框选的范围高度相似的框)直接剔除

2.SOFT-NMS:

      会比NMS更加柔和一点,所做的是将IOU值较大的这些框的置信度进行相应的降低

6.对于

BOS(Bag of specials):

1.输入尺寸统一化

SPPNet:

       ①增大感受野    ②所做的是通过最大池化来满足最终的输入特征一致

2.特征融合增加感受野

CSPNet:

7.加入注意力机制


1.CBAM:

       而YOLOV4只用了SAM,可以从上图中看出,YOLO为了更加的快速,只加入了注意力机制

8.特征融合人

1.PAN:

         PAN中的特征融合是直接数字的相加

2.而YOLOV4做的是:

     继续拼接,通过这些特征图的相同channel进行cat拼接

9.激活函数的改变

1.MISH:

1.公式:

2. 优点:

         使用这个当作损失函数,会使得这个相比于RELU函数,会更加的宽容一些,对于不太好的不会一棒子打死,计算量增加了,但是效果好了,如下图所示,在0的左侧部分会有一部分的值不是直接为0,让其不起作用,而是有一定的容错

10.YOLOV7 的整体的网络:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值