YOLO的更新迭代

YOLO(You Only Look Once)系列模型是目标检测领域中非常著名的模型,它的设计思想是将目标检测问题作为一个单次回归问题来解决。随着时间的推移,YOLO模型逐渐演化为多个版本,每个版本都进行了不同程度的优化和改进。以下是YOLO系列模型各个版本的主要区别:

1. YOLOv1 (2016)

  • 核心思想:将目标检测任务转化为单次回归问题,将图像分为S×S的网格,每个网格预测两个边界框及其置信度和类别概率。
  • 优点:速度非常快,可以实时检测。
  • 缺点:检测小目标和重叠物体时表现较差,定位精度不高。

2. YOLOv2(YOLO9000, 2017)

  • 改进点
    • 使用了Anchor Box(借鉴了Faster R-CNN),提高了对不同大小目标的检测性能。
    • 使用了Batch Normalization,提高了收敛速度和模型准确度。
    • 支持多尺度训练,增强了模型的泛化能力。
    • YOLO9000引入了基于WordTree的联合训练方法,可以在不标注的情况下检测9000个类别的目标。
  • 优点:性能和速度都有明显提高,准确度和检测效率之间取得了
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机智的小神仙儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值