YOLO(You Only Look Once)系列模型是目标检测领域中非常著名的模型,它的设计思想是将目标检测问题作为一个单次回归问题来解决。随着时间的推移,YOLO模型逐渐演化为多个版本,每个版本都进行了不同程度的优化和改进。以下是YOLO系列模型各个版本的主要区别:
1. YOLOv1 (2016)
- 核心思想:将目标检测任务转化为单次回归问题,将图像分为S×S的网格,每个网格预测两个边界框及其置信度和类别概率。
- 优点:速度非常快,可以实时检测。
- 缺点:检测小目标和重叠物体时表现较差,定位精度不高。
2. YOLOv2(YOLO9000, 2017)
- 改进点:
- 使用了Anchor Box(借鉴了Faster R-CNN),提高了对不同大小目标的检测性能。
- 使用了Batch Normalization,提高了收敛速度和模型准确度。
- 支持多尺度训练,增强了模型的泛化能力。
- YOLO9000引入了基于WordTree的联合训练方法,可以在不标注的情况下检测9000个类别的目标。
- 优点:性能和速度都有明显提高,准确度和检测效率之间取得了