jetson orin 安装cuda

第一步去网址下载

CUDA Toolkit Archive | NVIDIA Developer

然后选择版本,进入网址选择所需版本

选择版本之类的

下拉到下边,俩条命令,第一条下载,第二条安装

第一条命令下载,这种就等等,网好就快,网不好就慢

下载完了,然后运行第二条命令

到这选择accept

这里能全选就全选,假设出现报错,如图所示

出现上边这个报错,就把第一个第二个取消勾选就能安装成功,这块不太懂,有懂得评论区告我一下谢谢

这步就安装成功了,然后就是添加环境变量

命令:

sudo vim ~/.bashrc

添加环境变量

export CUDA_HOME=/usr/local/cuda-11.4

export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH

 export PATH=/usr/local/cuda-11.4/bin:$PATH

添加完退出

退出命令:点击完Esc      输入      :wq

:wq

出来之后立马输入source ./bashrc

命令:

source ~/.bashrc

输入nvcc -V验证一下,如下就没啥问题了

命令:

nvcc -V

然后输入几条命令cudnn也会自动搞上,第二条有用,另外俩条个人需要

sudo apt install cuda-toolkit-11-4 -y

sudo apt install libcudnn8-dev -y

sudo apt install tensorrt -y

<think>好的,用户现在问的是如何在CUDA 11.4环境下安装PyTorch。我需要先回顾之前的对话历史,用户之前询问的是如何卸载PyTorch,现在转向安装,特别是特定CUDA版本。可能用户已经卸载旧版本,现在想重新安装兼容CUDA 11.4的PyTorch。 首先,我需要确认PyTorch是否支持CUDA 11.4。根据官方文档,PyTorch通常支持较新的CUDA版本,但可能仍然提供对旧版本的支持。用户可能因为硬件或项目需求必须使用CUDA 11.4,所以需要找到对应的安装命令。 接下来,我应该检查PyTorch官方安装命令生成器,看看是否有针对CUDA 11.4的选项。比如,在PyTorch官网,用户可以选择CUDA 11.6或11.7,但11.4可能不在列表中。这时候需要查找旧版本的安装命令,或者通过指定正确的wheel文件来安装。 另外,用户可能已经安装CUDA 11.4的驱动,但需要确认PyTorch版本是否兼容。例如,PyTorch 1.12.0可能支持CUDA 11.3或11.6,不一定直接支持11.4。这时候可能需要安装适用于CUDA 11.3的PyTorch,因为CUDA有向后兼容性,但需要用户确认是否可行。 另外,用户可能遇到的问题包括安装后PyTorch无法检测到CUDA,或者版本不匹配导致错误。这时候需要建议用户验证安装,运行检查CUDA是否可用的代码,并解释可能的原因,比如驱动版本不匹配、环境变量问题等。 还要考虑用户使用的安装工具,比如pip或conda。Conda可能提供更简单的依赖管理,但可能没有对应CUDA 11.4的版本。而pip需要用户手动指定正确的仓库URL或wheel文件。 最后,可能需要提醒用户,如果无法找到直接支持CUDA 11.4的PyTorch版本,建议升级CUDA到支持的版本,或者使用Docker镜像等替代方案。同时,确保NVIDIA驱动是最新的,并且CUDA工具包正确安装。 总结步骤:确认CUDA版本,查找对应PyTorch版本,提供安装命令,验证安装,处理常见问题,给出替代方案建议。</think>--- ### 一、安装前的必要检查 #### 1. **确认CUDA 11.4已正确安装** - **验证CUDA版本**: ```bash nvcc --version # 查看CUDA编译器版本 ``` ```bash nvidia-smi # 查看GPU驱动支持的CUDA版本(可能显示更高版本,如12.x) ``` **注意**: - `nvidia-smi`显示的是驱动支持的**最高CUDA版本**,实际PyTorch会调用已安装CUDA工具包(如11.4)。 - 若未安装CUDA 11.4,需先从[NVIDIA官网](https://developer.nvidia.com/cuda-11-4-0-download-archive)下载安装。 #### 2. **检查PyTorch对CUDA 11.4的支持** - **官方兼容性**:PyTorch官方未直接提供CUDA 11.4的预编译版本,但可通过以下方案适配: - 使用CUDA 11.3的PyTorch版本(向下兼容CUDA 11.4) - 手动编译PyTorch源码(复杂,不推荐) --- ### 二、安装PyTorch(适配CUDA 11.4) #### 方案1:使用CUDA 11.3的PyTorch版本 通过`pip`安装PyTorch 1.12.0(最后一个官方支持CUDA 11.3的版本,兼容CUDA 11.4): ```bash pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113 ``` #### 方案2:通过Conda安装(需指定旧版本仓库) ```bash conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch ``` --- ### 三、安装后验证 运行以下Python代码检查CUDA是否可用: ```python import torch print(f"PyTorch版本: {torch.__version__}") print(f"CUDA是否可用: {torch.cuda.is_available()}") print(f"当前CUDA工具包版本: {torch.version.cuda}") print(f"检测到的GPU型号: {torch.cuda.get_device_name(0)}") ``` **期望输出**: ``` PyTorch版本: 1.12.0+cu113 CUDA是否可用: True 当前CUDA工具包版本: 11.3 检测到的GPU型号: NVIDIA GeForce RTX 3080 ``` --- ### 四、常见问题与解决方案 #### 1. **`CUDA不可用`或版本不匹配** - **原因**:NVIDIA驱动版本过低或CUDA工具包未正确安装 - **解决步骤**: 1. 升级NVIDIA驱动至[支持CUDA 11.4的最低版本](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html) 2. 检查环境变量: ```bash echo $PATH # 确认CUDA路径包含/usr/local/cuda-11.4/bin echo $LD_LIBRARY_PATH # 确认包含/usr/local/cuda-11.4/lib64 ``` #### 2. **无法找到指定版本的PyTorch** - **原因**:旧版本已从仓库移除 - **解决**:手动下载whl文件安装: ```bash pip install https://download.pytorch.org/whl/cu113/torch-1.12.0%2Bcu113-cp38-cp38-linux_x86_64.whl ``` (需根据Python版本和系统调整文件名) --- ### 五、替代方案建议 1. **升级CUDA版本**: 推荐升级至CUDA 11.8或12.x,使用官方支持的PyTorch版本(性能更好且维护更新): ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` 2. **使用Docker镜像**: 通过NVIDIA提供的[PyTorch Docker镜像](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch)隔离环境: ```bash docker run --gpus all -it nvcr.io/nvidia/pytorch:23.05-py3 ``` --- ### 附:CUDA 11.4与PyTorch版本对照表 | PyTorch版本 | 官方CUDA支持版本 | 适配CUDA 11.4的替代方案 | |-------------|------------------|-------------------------------| | 2.0+ | 11.7/11.8 | 不支持 | | 1.13.0 | 11.6/11.7 | 不支持 | | 1.12.0 | 11.3/11.6 | 使用`cu113`版本(推荐方案) | | 1.11.0 | 11.3 | 同上 |
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值