基于FPGA的图像锐化算法(USM)设计

免费获取源码请关注微信号《FPGA学习笔记册》!

1.图像锐化算法说明

        图像锐化算法在实际的图像处理应用很广泛,例如:医学成像、工业检测和军事领域等;它的作用就是将模糊的图像变的更加清晰。常用的图像锐化算法有拉普拉斯算子、sobel算法,但是它们的效果不是很好,USM反锐化算法可以看做是拉普拉斯算子的加强版,算法具有相当的锐化能力与可控性。

        该算法的设计原理如下所示:

        首先对原图做高斯模糊(半径可调),提取低频成分;然后把原始图像减去低频成分获得高频成分(间接提取高频);再对高频成分与阈值(阈值可调)比较,比阈值大的才进行增强(提高抗噪声性能);最后和原图进行叠加运算。

        通过maltab对图像进行USM算法处理后的图像对比,左边图像为原始图像,右边图像为USM算法处理后的图像;可以发现画红框的地方通过算法处理后图像的边缘变的清晰了,图像轮廓细节更加明显。

2.FPGA系统框架设计

​​​​​​

2.1图像高斯滤波程序设计 

 图像高斯滤波算法主要由三个模块组成:image_chage、image_storage和GS_matrix_mode;Image_chage的作用对输入的图像数据补充虚拟边缘数据;Image_storage的作用实现3*3模板数据缓存;GS_matrix_mode的作用是对输入对3*3模板内的数据进行运算。

2.1 .1image_change模块说明

        根据图像均滤波算法的原理介绍,我们可以发现一个问题就是一张图像的外围周边的像素是无法进行算法处理,通过算法处理后的图像的分辨率降低了。如下图所以,周边为红色的像素都是无法参与算法运算的,当3*3的模板在整幅图像进行算法处理后,获得的图像的大小就变成了绿色像素的范围了。在实际的图像处理中有两种办法可以解决这个问题:

        第一个办法就是根据算法的模板大小,配置相机吧原始图像分辨率变大一些,保证算法处理后的图像分辨率为最终想要的分辨率;

        第二种办法就是对原始图像进行修改,人工将分辨率变大,从而保证获得的分辨率为最终想要的分辨,我们这里主要讲第二种办法。   

 举例:原始图像的分辨率是7*3,也就是每行7个像素,一共三行数据;采用的均值滤波模板是3*3的。为了保证图像的边缘数据能够得到处理,我们需要对每行的左右两边各添加一个虚拟的像素(数值为0),这就能保证每行数据的原始像素都能得到算法运算,同时保证了算法运算后每行的数据的个数不变;同理对行数上我们也要添加两行虚拟行数保证算法运算后的行数不边;image_change模块就是按照这个思路设计的。

 备注:对行数的处理,本模块在原始图像的结尾处添加一行,对于开头的添加的虚拟行通过后面的模块来实现。

 

  • 1. image_change程序接口

名称

方向

位宽

说明

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

战斗的青春岁月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值