一、tensor(张量)
1. tensor简介
在深度学习中,可以理解为Tensor是一个多维度的矩阵。张量是一个不随参照系的坐标变换(其实就是基向量变化)而变化的东西。
2. 类型
3. 属性
每一个Tensor都有torch.dtype、torch.device、torch.layout
- torch.dtype:数据类型
- torch.device:是指torch.Tensor分配到的设备('cpu’或’cuda’设备类型)的对象
- torch.layout:表示torch.Tensor内存布局的对象,分别是稀疏和密集。要注意的是稀疏化时需要提供元素的索引和值。可用torch.sparse_coo_tensor()和torch.sparse_csr_tensor()来实现
dev = torch.device("cpu") # 使用cpu
print(torch.tensor([1, 2], device=dev)) # 将张量放在cpu上
dev = torch.device("cuda:0") # 使用gpu
print(torch.tensor([1, 2], device=dev)) # 将张量放在gpu上
# 张量的稀疏化
indexs = torch.tensor([[0, 1, 1], [2, 0, 2]]) # 索引
values = torch.tensor([3, 4, 5], dtype=torch.float32) # 值
x = torch.sparse_coo_tensor(indexs, values, [2, 4]) # 稀疏化
print(x)
print(x.to_dense()) # 将稀疏张量转化为稠密张量(含有多个0)
# 输出
tensor([1, 2]) # cpu上的张量
tensor([1, 2], device='cuda:0') # gpu上的张量
tensor(indices=tensor([[0, 1, 1],
[2, 0, 2]]),
values=tensor([3., 4., 5.]),
size=(2, 4), nnz=3, layout=torch.sparse_coo) # 稀疏张量的存储
tensor([[0., 0., 3., 0.], # 稀疏转稠密
[4., 0., 5., 0.]])
4. torch.tensor与torch.Tensor的区别
- torch.Tensor是将输入的data转化torch.FloatTensor,而对于 torch.tensor(当你未指定dtype的类型时) 将依据data类型转化为torch.FloatTensor、torch.LongTensor或torch.DoubleTensor等
- torch.Tensor是torch.empty(会随机产生垃圾数组,详见实例)和torch.tensor之间的一种混合
本文只用于个人学习与记录,侵权立删