最新预测:DeepSeek时代,科技组织即将发生的12大变化

前言

本文内容根据我们2月13日的直播内容生成。

在本次直播中,我们非常荣幸地邀请到了肖哥,他是第二次参加我们的直播,是《人工智能现代方法》的审读专家。肖哥一直跟踪AI的发展,对行业有着深刻的理解和独到的见解。

直播开始,我们请他就“DeepSeek给行业带来了什么本质变化?”这一问题分享了他的观察和思考。肖哥最激进的预言是:“随着AI的发展,人类可能更多地成为AI的助手,而不是AI成为人类的助手。” 以下是他的主要观点:

1. 人工智能的两次“出圈”:

  • 第一次:ChatGPT的出现让肖哥感到惊讶,尽管当时GPT-3已经存在,但ChatGPT的出圈并非因为技术突破,而是因为它在技术人员和创意人员中的广泛应用。

  • 第二次:DeepSeek的出现再次让肖哥感到惊讶。尽管DeepSeek在技术上没有太多突破,但其高质量和低成本的特性使其迅速普及。

2.  DeepSeek的成功原因:

  • 高质量:DeepSeek进入了大模型的第一梯队,具备了推理能力,能够自主思考和分析问题。

  • 低成本和开源:DeepSeek的成本足够低且彻底开源,使得更多人能够接触和使用,从而迅速普及。

3. 对商业模式的影响:

  • 通用智能成为基础设施:推理模型的出现使得通用智能成为基础设施,降低了智能决策的门槛,使得企业之间的竞争不再依赖于信息差,而是依赖于智能决策能力。

  • 组织内部人与AI的关系:AI不再是简单的助手,而是与人类平等甚至在某些方面超越人类的合作伙伴。未来,人类可能更多地成为AI的助手。

4. 对教育的影响:

  • 未来教育的三个能力:肖哥认为未来教育需要培养三个能力:问题定义的能力、与AI沟通的能力和对AI结果的判断能力。

DeepSeek时代对软件研发组织的12个预测

接下来大家就AI可能给科技组织带来的12个变化预测展开了讨论:

人员组成变化

1. 1拖N - 1个高级程序员 拖 N个Agent

高级程序员将能够利用多个Agent完成大量工作,显著提升效率和生产力。

肖哥指出,AI的推理能力已经足够强大,可以辅助程序员完成复杂的任务。

博士也提到,自己在春节期间通过AI的帮助恢复了编码能力,并成功提交了生产代码。他强调,AI的辅助使得高级程序员可以更高效地完成工作。

此外,老钱引用了Kent Beck的观点,他曾说:“我很不情愿地用AI试着写代码,发现它可以让我的90%技能被取代,但是它可以让我剩余10%的技能放大一千倍。” 这表明,虽然AI可以取代许多重复性的工作,但高级程序员的核心技能和创造力将变得更加重要。

2. 全栈程序员的崛起

未来会有更多全栈程序员,他们能够胜任前端和后端开发工作。

博士提到,未来团队中可能一个人就能挑起多个角色。他指出,AI的辅助使得程序员可以更轻松地掌握多种技能,从而成为全栈程序员。博士提到:“我们现在感觉基本上有了这个Agent的帮助,这个前后端的差异其实已经不是那么大了,或者说至少你要试着学起来了。” 此外,博士还提到了在知微产品团队中,已经不在区分前后端程序员了,全栈程序员的需求正在增加。

3. 非专业程序员的加入

未来会有更多非专业程序员,如业务人员和产品经理,他们可以通过AI工具编写代码。

博士提到,未来非专业程序员可能会直接编写代码,然后由高级程序员审核。他指出,AI的对话式编程和代码生成能力使得非专业程序员也能够编写代码,“未来在团队里面可能一个人就一旦挑了——如果还有人的话”。

组织形态变化

4. 钻石型组织 – AI混成部落制

未来的组织结构将变成钻石型,人数更少,人才更全栈。

小龙提到,AI的辅助使得组织可以更高效地完成工作,从而减少对大量初级程序员的需求。未来的部落制人数会更少,规模会更小,里面会有很多AI的智能体来帮你干活。” 中层管理者的定位需要进一步观察和讨论,他们可能需要适应新的组织结构,找到自己的新角色。

软件工艺变化

5. 基于任务描述生成代码

基于任务描述的代码生成将快速普及。

博士提到,自己在春节期间通过AI的帮助恢复了编码能力,在他的实践中,通过自然语言描述生成的几千行代码,仅需要改少量错误即可。在确保描述相对准确的情况下,AI生成的代码质量是非常高的。

6. AI生成代码的占比急剧增加

AI生产的代码占比会急剧增加。

如前所述,博士表示在自己的亲身实践中,切身感受到AI的代码生成能力已经足够强大,他试验过程中提交到生产的代码,几乎百分之百由AI生成,人在其中起到的作用主要是审核和修改个别小细节。

7. UML的复兴

UML将复兴,成为“人-Agent”交互的完美语言。

UML作为一种系统建模语言,可以有效地描述系统的设计和架构。博士指出:“我们预测,在未来整个研发过程中,像前面提到的需求和设计的重要性,会更加凸显和提升,只要大家想要做好、做对事情。”

8. 代码设计平权,单元测试覆盖率大幅提升

单元测试覆盖率将大幅提升。博士自己实践用Cursor生成了高质量的单元测试代码,对提高单元测试覆盖率很有帮助。

他说:“你知道要干什么,大模型就可以帮你写出怎么实现,然后你再告诉他这个内容我需要做单元测试,对于AI来说也很容易继续生成单元测试的内容。”

9. 端到端测试的重要性提升

在当下及未来的发展进程中,端到端测试的重要性将日益凸显,甚至可被视为 AI 的终极反馈环。

博士指出,端到端测试已然成为 AI 优化的关键依据。究其原因,在于端到端测试能够对系统进行全面且深入的功能与性能评估,从而为 AI 系统源源不断地提供极具价值的重要反馈信息,助力 AI 实现更为精准、高效的优化与升级,推动其持续发展与完善,以更好地适应复杂多变的应用场景与用户需求。

研发工具变化

10. IDE成为科技组织的顶级入口

集成开发环境(IDE)将成为软件开发的主要入口,取代浏览器成为开发者的主要工作界面。

博士认为,IDE的信息密度远高于浏览器,更适合处理复杂的开发任务以及与AI进行交互。

他指出,未来的开发工作将更多地依赖于对话框和语音输入,而非传统的鼠标操作。

此外,博士还提到,未来的需求、架构设计、代码和测试等都将作为上下文进入IDE,实现"Everything as Code"的理念。这意味着所有的开发任务都将在一个统一的环境中进行,从而提高开发效率和协作能力。

11. 环境需求急剧上升

环境需求将急剧上升,一个Agent需要一个分支和一套环境。

博士指出,每个Agent需要独立的开发环境,以确保工作的独立性和稳定性。“每个员工至少有一个笔记本作为生产工具,未来Agent是不需要笔记本的,但至少要有一套环境,它要有一个代码分支,来完成改代码、编译、测试等工作。”

软件资产变化

12. 软件工程过程的全面资产化

软件工程过程将全面资产化,各种类型的资产能够都称为大模型的一部分,提升各类产出物设计的全面性、一致性,并提高沟通效率,Everything as Context。

博士提到,软件工程过程中的各种资源和工具都可以作为AI的上下文,提高开发效率和代码质量。“我们预测后面IDE会成为科技组织的主入口,所有的东西都入库,都作为上下文都有版本控制。” 

此外,老钱提到,需求质量和需求转换是软件开发中的重要环节,AI可以帮助提高需求的质量和转换效率。老钱还提到RAG(Retrieval-Augmented Generation)技术,可以进一步提升需求管理和代码生成的效果。

d557701999fc1dc7baeea522ec374c2e.png

总结与展望

我们认为,DeepSeek的出现不仅仅是技术上的一次突破,更是对整个科技组织生态的一次重塑。这种重塑涉及到人、组织、工艺、工具和资产等多个方面,将共同构建一个新的科技组织工作生态系统。

未来,高级程序员将能够利用多个Agent完成大量工作,显著提升效率和生产力。同时,会有更多全栈程序员和非专业程序员(如业务人员和产品经理)加入到编程工作中。AI的辅助将使得程序员可以更轻松地掌握多种技能,从而成为全栈程序员。

组织

未来的组织结构将变成钻石型,人数更少,人才更全栈。AI的辅助将使得组织可以更高效地完成工作,从而减少对大量初级程序员的需求。中层管理者的定位需要进一步观察和讨论,他们可能需要适应新的组织结构,找到自己的新角色。

工艺

基于任务描述的代码生成将快速普及,AI生产的代码占比将急剧增加。UML将复兴,成为人-Agent交互的完美语言。单元测试覆盖率将大幅提升,端到端测试的重要性将提升,成为AI的终极反馈环。

工具

IDE将成为科技组织的顶级入口,Everything As Code。环境需求将急剧上升,一个Agent需要一个分支和一套环境。

资产

软件工程过程将全面资产化,Everything as Context。所有的开发资源和工具都可以作为AI的上下文,提高开发效率和代码质量。

最后,我们分享一位听众的评论,他的观点非常发人深省:汽车的发明不仅仅改变了出行方式,比马车更快,还带来了更多的公共政策、制度和配套设施的变化。

这一观点对科技组织的进化有很好的启示。科技组织在面对DeepSeek这样的技术变革时,不仅要关注技术本身,还要关注由此带来的组织结构、工作方式、管理政策等多方面的变化。


本文贡献者(排名不分先后):

肖睿,北大青鸟研究院院长,向量智能创始人,北大教育经济与管理博士、人工智能硕士,《人工智能现代方法》审读专家。

吴穹,Agilean合伙人兼首席顾问,北大计算机科学博士,科技组织管理专家。

钱伟,Agilean资深顾问,18年软件工程经验,擅长项目管理、需求管理,《基础设施即代码》译者。

熊小龙,Agilean首席顾问,近20年软件研发与管理经验,规模化敏捷转型专家,《稳敏兼顾:数字化研发管理实战》作者。

Agilean 是一家管理咨询业的科技公司,致力帮助企业全面提升数字化管理能力,成为企业数字化转型过程中长期可信赖的伙伴。在过去的十来年间,我们持续为国家开发银行、中国银联、平安银行、上海银行、上海农商、广发银行、宁波银行、长沙银行、招商证券、中金财富、易方达、深信服、天马微电子等国内众多行业标杆客户提供过管理咨询与工具改造升级服务,并在业界拥有不俗的口碑。我们具有深入的领域知识、丰富的流程优化经验、能系统性支持高层管理者落地战略愿景与管理思路,并擅长用咨询与数字化管理工具相结合的方式,帮组织快速实现管理升级。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值