DeepSeek时代下的需求管理新范式

be77da6ea60b839b232d47990fc2ea64.gif

点击蓝字 关注我们

(注:本文内容根据Agilean2月27日的直播内容生成。)

前言

在数字化转型的浪潮中,需求管理一直是企业面临的核心挑战之一。尤其是在银行业,需求资产的梳理和管理往往耗费大量时间和资源。吴穹博士在本次直播中提到,他曾参与一个项目,耗费了1000人天、整整一年的时间,才梳理出一个相对完整的需求资产库。这种高成本、低效率的现状,促使团队开始探索如何利用AI技术,特别是大模型,来优化需求管理和资产化的过程。

随着AI技术的快速发展,软件工程领域正在迎来一场深刻的变革。AI驱动的软件工程新范式,不仅改变了传统的需求编写方式,还能够通过AI的理解能力、联想能力和逻辑性,帮助企业建立高质量的需求资产。在这次直播中,小龙、博士和老钱围绕“AI在需求管理中的应用”展开了深入讨论,分享了三个关键场景,展示了AI如何在不同阶段提升需求管理的效率和质量,并提出,在DeepSeek时代,文档先行成为可能。

6202953a741bbcbbd786b38ab2f88bc4.jpeg

场景一

AI辅助需求编写与扩展

通过大模型的联想能力,业务方的一句话需求可以被扩展为详细的多点需求,显著减少了业务方的时间成本,同时提高了需求传递的准确性。

子场景1.1:从一句话需求到详细需求

在传统的需求管理过程中,由于专业分工的差异,业务方因为时间精力不足或对研发工作的了解有限,往往只能提出一句话需求,导致研发团队难以准确理解业务意图。借助大模型,业务方可以通过提供上下文,调教大模型帮助其提出更合理、更全面的需求。

具体步骤:

  1. 业务方提出一句话需求,例如“我需要一个菜单同时打开多个页面”。

  2. 大模型根据上下文和已有知识库,生成多个相关问题,例如“是否需要考虑页面刷新?”“是否使用浏览器标签页?”等。

  3. 大模型将这些问题转化为详细的需求点,例如“支持多标签页打开”“页面刷新时保持状态”等。

  4. 业务方选择或调整这些需求点,最终形成完整的需求文档。

子场景1.2:需求发散与收敛

老钱提到,大模型在需求编写过程中不仅能够发散思维,还能帮助业务方进行需求收敛。他说:“大模型帮我发散,我负责收敛。比如它提到系统集成与测试的修改,但我不需要这部分,我就告诉它不考虑这一点。”

大模型通过其强大的自然语言处理能力,能够理解业务方的意图,并结合上下文生成相关的需求点。根据联网工具验证,大模型的这种能力依赖于其预训练过程中对大量文本数据的学习,使其能够捕捉到语言中的隐含逻辑和关联性。

场景二

AI驱动的需求质检与优化

大模型能够实时检查需求的合理性和完整性,通过交互式的方式逐步引导业务方完善需求,确保每个细节都符合标准,从而提升需求质量并减少后期修改的成本。

子场景:实时需求质检

在需求编写过程中,大模型可以帮助我们实时检查需求的编写质量。

具体步骤:

  1. 业务方编写需求文档,大模型实时分析文档内容。

  2. 大模型根据预设的质量标准,检查需求是否清晰、完备。

  3. 大模型提出改进建议,例如“需要补充用户操作步骤的描述”或“业务规则描述不够清晰”。

  4. 业务方根据建议修改需求文档,确保需求质量。

大模型在需求质检中的应用依赖于其逻辑推理能力和对语言规则的理解。根据联网工具验证,大模型通过其预训练的知识库,能够识别需求文档中的逻辑漏洞和不清晰之处,并提供改进建议。

场景三

AI助力需求资产化与维护

利用大模型,增量需求可以高效合并到全量需求中,确保需求资产的持续更新。此外,知微产品团队正在尝试从代码逆向推导需求,进一步探索需求资产化的可能性。

子场景3.1&3.2:增量需求合并到全量需求

在需求资产化过程中,如何将增量需求合并到全量需求是一个重要挑战。人工合并的方式不仅消耗大量人力,合并的准确性和有效性对操作人的经验与能力也有较高的要求。这一点在我们的试验下,也可以通过大模型实现高效操作,确保需求资产的持续更新。

具体步骤:

  1. 业务方编写增量需求文档,大模型分析增量需求的内容。

  2. 大模型根据全量需求文档的结构,找到增量需求应插入的位置。

  3. 大模型将增量需求合并到全量需求中,并生成差异报告,列出所有修改点。

  4. 业务方和研发团队审核合并后的全量需求,确保其准确性和一致性。

33234d8a705d74765bbc71aabe7757f8.png

子场景3.3:从代码、需求手册等逆向推导全量需求

博士分享,知微产品团队正在尝试从需求手册、代码等逆向推导需求,进一步探索需求资产化的可能性。虽然该场景还处于实验阶段,但大模型的能力已经让我们看到了希望。

大模型在需求资产化中的应用依赖于其对代码和文本的双重理解能力。根据联网工具验证,大模型通过其预训练的知识库,能够识别代码中的业务逻辑,并将其转化为自然语言描述的需求文档。

以上讨论的三大场景应用是我们团队已经试验并产生了实际效果的能力,这些分享展示了AI在需求管理中的巨大潜力。通过大模型,企业不仅可以提高需求编写的效率和质量,还能更好地管理和维护需求资产。相信未来随着大模型技术的不断进步,需求管理将迎来更多的创新和突破。

关于需求资产化与结构化的回答与建议:

吴穹博士在回答听众关于需求资产化和需求文档结构化的问题时,提出了几点核心观点和建议。

  • 传统结构化工具的局限性:博士指出,银行业目前主要依赖强结构化的工具(如类似Word的编辑器)来管理需求资产,但这些工具在提升结构化的同时,牺牲了编写的体验,且未能有效解决增量需求与全量需求的合并问题。

  • 大模型的优势:在我们团队的实践过程中,通过大模型找到了一种平衡点,团队可以在不损失文档编写体验的前提下,实现语义层面的结构化。大模型能够理解需求的逻辑关系,帮助团队更高效地合并增量需求和全量需求,通过逻辑上的结构化来实现需求资产化。这种方法不仅适用于银行业,也为其他行业的数字化转型提供了新的思路。

  • 语义结构化的新范式:博士建议,未来的需求管理应更注重语义层面的结构化,而非工具层面的强制结构化。这种方式既能保持文档编写的自由度,又能确保需求资产的可维护性和一致性。

总结:需求管理的未来路线图与实验方向

在直播的结尾,博士和老钱为需求管理的未来描绘了一条清晰的路线图,并提出了几个值得探索的实验方向。这些方向不仅展示了AI在需求管理中的巨大潜力,也为企业如何逐步引入和应用大模型提供了实用的指导。

2e54b0873e80458ac6cef09c1550af15.png

未来路线图:需求管理的三步走战略

第一步:低垂的果实——需求编写与质检

博士和老钱一致认为,需求编写和质量检查是AI在需求管理中最容易落地的场景。通过大模型的辅助,业务方可以更高效地编写需求,同时AI能够实时检查需求的合理性和完整性。

第二步:中等复杂度场景——需求影响分析与系统边界划分

在需求编写的基础上,AI可以帮助业务方分析需求对现有系统的影响,并明确需求的系统边界。

第三步:高阶场景——需求资产化与工作量预测

需求资产化和工作量预测是需求管理中的“皇冠场景”。通过大模型,企业可以将增量需求高效合并到全量需求中,确保需求资产的持续更新。此外,AI还可以基于历史数据和需求复杂度,预测工作量和开发周期。

未来实验方向:探索AI在需求管理中的更多可能

结合AI的能力和实验经验,我们预测未来利用AI赋能需求管理可以在以下三点取得较大突破,这也将是我们团队进一步实验的重点方向。

多模态需求管理

未来的需求管理可能会涉及更多的多模态数据,如图片、流程图等。

需求编写工具的革新

未来的需求编写工具可能会从传统的Word转向更轻量化的Markdown格式,以更好地适应AI的处理方式。

需求资产化的自动化维护

通过大模型实现需求资产的自动化维护。

结语:AI时代的需求管理新范式

通过这次讨论,我们可以看到,AI正在为需求管理带来一场深刻的变革。从需求编写到需求资产化,大模型的能力正在改变传统的软件工程范式。未来,随着技术的不断进步,需求管理将迎来更多的创新和突破。正如博士所言:“AI时代,万物皆有可能,放手去试。”

我们期待在未来的实验中,看到更多关于AI在需求管理中的应用案例。无论是从代码逆向推导需求,还是多模态需求管理的探索,这些实验都将为行业带来新的启示。让我们共同期待,AI如何继续推动需求管理的革新,为企业创造更大的价值。

END

本文贡献者(排名不分先后):

吴穹,Agilean合伙人兼首席顾问,北大计算机科学博士,科技组织管理专家。

钱伟,Agilean资深顾问,18年软件工程经验,擅长项目管理、需求管理,《基础设施即代码》译者。

熊小龙,Agilean首席顾问,近20年软件研发与管理经验,规模化敏捷转型专家,《稳敏兼顾:数字化研发管理实战》作者。

Agilean 是一家管理咨询业的科技公司,致力帮助企业全面提升数字化管理能力,成为企业数字化转型过程中长期可信赖的伙伴。在过去的十来年间,我们持续为国家开发银行、中国银联、平安银行、上海银行、上海农商、广发银行、宁波银行、长沙银行、招商证券、中金财富、易方达、深信服、天马微电子等国内众多行业标杆客户提供过管理咨询与工具改造升级服务,并在业界拥有不俗的口碑。我们具有深入的领域知识、丰富的流程优化经验、能系统性支持高层管理者落地战略愿景与管理思路,并擅长用咨询与数字化管理工具相结合的方式,帮组织快速实现管理升级。

企业小助手二维码.jpg

如想了解我们的咨询服务或工具解决方案,欢迎扫描左侧二维码添加小助手咨询~

0e73450e292d65c37ac6ebf719a734c5.gif

分享

c98ad79cfce4adcafa17df95aeeb2906.gif

收藏

708fa76eb9f08e274530082b7ff0caf9.gif

在看

c52ce5664585dff0c1f0603bbdac41a4.gif

点赞

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值