机器学习笔记——多层线性(回归)模型 Multilevel (Linear Regression) Model

本文介绍了使用PyTorch实现的多层线性模型,涉及输入空间、多维模型、损失函数、优化器以及不同激活函数的应用。通过糖尿病数据集实例展示了模型构建、训练过程及不同激活函数对收敛速度的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章目录

机器学习笔记——梯度下降、反向传播
机器学习笔记——用pytorch实现线性回归
机器学习笔记——pytorch实现逻辑斯蒂回归Logistic regression
机器学习笔记——多层线性(回归)模型 Multilevel (Linear Regression) Model
深度学习笔记——pytorch构造数据集 Dataset and Dataloader
深度学习笔记——pytorch解决多分类问题 Multi-Class Classification
深度学习笔记——pytorch实现卷积神经网络CNN
深度学习笔记——卷积神经网络CNN进阶
深度学习笔记——循环神经网络 RNN
深度学习笔记——pytorch实现GRU



前言

参考视频——B站刘二大人pytorch深度学习实践


一、多层线性模型

1.输入空间

在这里插入图片描述
在数据集中,我们将输入矩阵中的行叫做sample,即样本。
在这里插入图片描述
我们将输入矩阵的列叫做feature,特征或字段

2.多维模型

在这里插入图片描述

和一维的模型相比较,多维的样本,每一个维度的数值都要和权重相乘。可以将每一个样本输入看作一个列向量 ( x 1 x 2 . . . x n ) \begin{pmatrix}x1 \\x2 \\... \\xn \end{pmatrix} x1x2...xn ,权重w也是一个行向量(w1,w2…wn),二者转置相乘,得到一个标量,再加上偏置b。
在这里插入图片描述
Mini-Batch size时,即有多个样本输入时,可以看作矩阵运算。

3.多层模型

在这里插入图片描述
设置线性模型的输入输出维度。单层的神经网络,输入8维的矩阵,输出1维的矩阵
在这里插入图片描述
在多层的神经网络中,我们的目标是将多维的输入空间经过非线性的空间变换得到1维的输出空间。我们可以将输入的8维矩阵映射到6维空间中,通过引入激活函数 σ \sigma σ,给线性变换增加非线性的因子。 这样就使我们可以去拟合相应的非线性变换。
在这里插入图片描述
在神经网络中,我们可以通过一层神经网络将一个8维的空间降为6维的空间,再通过一层神经网络将为2维的空间…直至我们需要的输出空间的维度
也可以先上升再降低,比如8维→24维→12维→6维…
一般来说中间的层数越多,代表模型的学习能力越强,但并不一定代表模型越好,因为模型也会学到很多噪声,造成过拟合。模型应当要具有一定的泛化能力。
维度可以随意的改变,但如何选择合适的维度变换,需要通过超参数搜索。

在这里插入图片描述
模型结构图,8维的输入通过第一层线性模型映射成为6维,通过sigmoid激活函数将每个维度的值映射到0—1区间上,尔后又通过第二层的线性模型将6维空间映射到4维空间上,继续通过sigmoid激活函数将每个维度的值映射到0—1区间上,最后通过第三层线性模型将4维空间映射成1维,通过sigmoid激活函数映射到0—1区间上,最后输出我们的预测值。

4.损失函数和优化器

在这里插入图片描述

5.激活函数

除了sigmoid激活函数,还有如下等多种激活函数
在这里插入图片描述
在这里插入图片描述

二、实现代码

1.数据集简介

在这里插入图片描述
数据集使用的是糖尿病数据集
是一个8维的数据,第九列是y
y=0代表患糖尿病风险减少,y=1代表患糖尿病风险增加

2.代码

#!/user/bin/env python3
# -*- coding: utf-8 -*-
"""
    多层线性回归模型,逻辑斯蒂回归
    数据集使用的是糖尿病数据集
    是一个8维的数据,第九列是y
    y=0 代表患糖尿病风险减少,y=1 代表患糖尿病风险增加
"""
import numpy as np
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt

# 数据集
# 训练集
xy = np.loadtxt(r'dataset/diabetes.csv.gz', delimiter=',', dtype=np.float32)  # 读取数据,用逗号分隔,类型是float32
x_data = torch.from_numpy(xy[:, :-1])  # 输入数据,所有行,第一列到倒数第二列  从numpy里面创建tensor
y_data = torch.from_numpy(xy[:, [-1]])  # 结果,所有行,最后一列   从numpy里面创建tensor

# 测试集


# 绘图数据
epoch_list = []
loss_list = []


# 模型
class MultilevelLinearModel(torch.nn.Module):
    def __init__(self):
        super(MultilevelLinearModel, self).__init__()
        # 三层线性模型
        self.Linear1 = torch.nn.Linear(8, 6)  # 8维降至6维
        self.Linear2 = torch.nn.Linear(6, 4)  # 6维降至4维
        self.Linear3 = torch.nn.Linear(4, 1)  # 4维降至1维
        # 激活函数
        self.activate = torch.nn.ReLU()  # ReLU作为激活函数

    def forward(self, x):
        x = self.activate(self.Linear1(x))
        x = self.activate(self.Linear2(x))
        x = F.sigmoid(self.Linear3(x))
        return x


if __name__ == '__main__':
    # 模型
    model = MultilevelLinearModel()
    # 损失函数
    criterion = torch.nn.BCELoss()  # 交叉熵损失
    # 优化器
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
    # 训练
    for epoch in range(100):
        # forward
        y_pred = model(x_data)
        loss = criterion(y_pred, y_data)
        print('epoch:', epoch, 'loss=', loss.item())

        # backward
        optimizer.zero_grad()  # 梯度清零
        loss.backward()  # 反向传播
        # update
        optimizer.step()
        # 绘图数据
        epoch_list.append(epoch)
        loss_list.append(loss.item())

    # 绘图
    plt.plot(epoch_list, loss_list)
    plt.xlabel('epoch')
    plt.ylabel('loss')
    plt.show()

3.结果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
上图是使用ReLU作为激活函数的结果
下面有一份只使用sigmiod作为激活函数的结果图
在这里插入图片描述
似乎只使用sigmoid函数作为激活函数的收敛速度更快。

### 使用 Stata 实现多层线性模型 在统计学中,多层线性模型Multilevel Linear Models, MLMs)用于处理具有嵌套结构的数据。例如,在教育研究中,学生可能被嵌套在学校内;或者在医学研究中,患者可能被嵌套在医院内。Stata 提供了一个强大的命令 `mixed` 来拟合这些类型的模型。 以下是关于如何使用 Stata 的 `mixed` 命令来实现多层线性模型的关键点: #### 数据准备 为了正确应用多层模型,数据通常需要以长格式存储。这意味着每一行代表一个观测单位,并且嵌套关系通过特定的分组变量表示[^1]。例如,如果研究的是学校内的学生,则每名学生的记录应包含所属学校的标识符。 #### 定义随机效应和固定效应 - **随机效应**:反映不同群组间的变异性。例如,不同的学校可能会有不同的平均成绩水平。 - **固定效应**:描述整个样本中共有的影响因素。比如性别、年龄等因素对于因变量的影响可以视为固定效应。 在 Stata 中设置随机截距模型时,可以通过如下方式指定: ```stata mixed outcome_variable predictor_variables || group_identifier:, reml ``` 这里, - `outcome_variable` 是响应变量; - `predictor_variables` 表示一系列预测因子(即自变量),它们既可以是连续型也可以是分类型; - `group_identifier` 则指定了数据中的分组变量,用来定义哪些观察属于同一个群体; - 参数选项 `reml` 指定采用受限最大似然估计法(REML),这通常是推荐的方法因为其能提供更稳健的标准误估计[^2]。 当希望加入额外的随机斜率项时,可以在上述基础上扩展语法。假设我们想让某个协变量的效果随时间变化而有所不同(即允许该系数跨个体有所差异),则可写成这样: ```stata mixed outcome_variable time_predictors other_fixed_effects || id: time_predictors, covariance(unstructured) reml ``` 此例子说明了不仅存在针对每个主体的独特初始状态(`id`)上的偏差调整外还考虑到了随着时间推移趋势的变化情况[`time_predictors`]也可能是个性化的[^3]。 #### 示例代码展示 下面给出一段具体的实例演示如何构建含有一级与二级交互作用以及相应随机成分在内的多层次回归方程: ```stata // 加载示例数据库 use http://www.stata-press.com/data/r16/pig.dta, clear // 查看前几条记录确认数据集布局合理 list in 1/5 // 创建并运行基础版本的两级别混合效果模式 (仅限于猪体重增长轨迹) mixed weight week || id:, reml // 如果还想探索更多复杂情形下的动态特性的话... // 添加一些固定的解释要素进去看看会怎样改变整体图像? gen baseline_qol = rnormal() // 这里只是虚构了一些基线生活质量得分作为示范用途而已哦~ replace surgery=0 if mod(_n,7)==0 // 同样地模拟了几种外科干预措施的存在与否状况咯~ // 将新引入的因素纳入考量范围之内重新评估系统行为特征吧! mixed weight week base_qol surgery age gender reason bdi || id:, reml ``` 以上脚本展示了从简单到复杂的逐步建模过程,其中包含了多个层面的信息整合操作步骤[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值