神奇的量子世界——量子遗传算法(Python&Matlab实现)

本文详细介绍了量子遗传算法的重要知识点,包括遗传算法、量子计算和量子遗传算法的原理。接着,通过Python和Matlab分别展示了量子遗传算法的实现步骤,包括初始化、编码、适应度评估、量子旋转门更新和迭代过程。最后,给出了流程图和两种编程语言的实现结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 重要知识点

1.1 遗传算法

 1.2 量子计算

1.3 量子遗传算法

2 操作步骤

3 流程图

4 量子遗传算法——Python实现 

4.1 数据

4.2 代码 

4.3 结果 

5 量子遗传算法——Matlab实现 

           ​


1 重要知识点

在专栏我已经系统总结了遗传算法:*智能优化算法(持续更新中......),下面我们先讲解重要知识点,然后用Python和Matlab分别实现。

1.1 遗传算法

遗传算法是一种模拟达尔文生物进化论和遗传变异的智能算法。这种算法具有鲁棒性(用以表征控制系统对特性或参数扰动的不敏感性)较强,实现的步骤规范、简单通用等优点,在人工智能、多目标决策、社会及经济等领域都有大量运用。但一般遗传算法存在一定的局限性:收敛速度慢、迭代的次数多,易过早收敛,容易陷入局部最优解。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值