目录

1、概述
(1)电力调度优化理论及其应用

(2)电力调度的机组组合UC

(3)组合模型及算法


2、人性化的Yalmip+Cplex
(1)热身运动——线性规划
尽管 python 比较火,cplex 对 python 的支持目前还不是太全,相关的学习资料比较少,ibm 自己 出的资料对 python 包的介绍也很简略,例子及相关类方法的介绍也不详细,这一点远没有对 java 或 c++ 支持地好。cplex 在 python 中没有重载加减乘除符号吗?目前给的例子都是输入系数矩阵这种形式。使用起来非常不方便的。
所以推出了Yalmip+Cplex(matlab),matlab中这个库的下载方法,后面的文章会讨论matlab中Yalmip+Cplex这个强大的库在我们电力系统中的强大作用(噢头曼!!!),虽然我很喜欢用Python,但是python是这几年才火起来,所以这个Cplex库还不是很完善,所以对于这个库强烈推荐matlab。下面先来点简单的线性规划,让大家热身。

%(1)设定决策变量X(1)、X(2)
%(2)sdpvar:实数变量;binvar:0—1变量;intvar:整型变量
%(3)Yalmip默认是对称的,要求非对称用full
x=sdpvar(2,1,'full');
z=-2*x(1)+4*x(2); %目标函数,默认最小
st=[]; %设定一系列约束
st=[st,-3*x(1)+x(2)<=6];
st=[st,x(1)+2*x(2)>=4];
st=[st,x(1)+3*x(2)==4];
st=[st,x(2)>=-3];
ops=sdpsettings('solver','cplex'); %设定求解器
r=optimize(st,z); %求解,如果最大值用-z
x=value(x); %查看求解结果x的值
z=value(z); %查看目标函数的最优解
%结果
Optimal solution found.
>> x
x =
13
-3
>> z
z =
-38
3、Yalmip+Cplex 解决机组组合(YYDS)
3.1 算例
基于已知的系统数据,求解计划时间内的6机30节点41支路的功率情况与机组的开停机情况,使得系统总成本达到最小。该问题的决策变量由两类,第一类是各时段机组的出力,为连续变量。第二类是各时段机组的启停状态,为整数变量,0表示关停,1表示启动。
本问题属于混合整数规划(MIP)问题,即要在决策变量的可行解空间里找到一组最优解,使得目标函数尽可能取得极值。对于混合整数规划,CPLEX提供了快速的MIP求解方法。

3.2 目标函数

3.3 约束条件


3.4 模型约束条件处理
模型中有许多约束条件,这些约束条件不能用程序直接表达,只能用变换来表达。

电力调度优化:Yalmip+Cplex实战与机组组合MIP解决方案
本文探讨了电力调度的理论应用,聚焦于Yalmip+Cplex在机组组合中的混合整数规划解决方案。通过实例演示如何使用Yalmip进行线性规划热身,并深入解析如何解决实际问题,包括目标函数、约束条件处理和Matlab代码实现。
7085

被折叠的 条评论
为什么被折叠?



