💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
目录
💥1 概述
如今,有相当数量的元启发式算法被用来解决许多变量多、复杂度高的问题。最流行的基于群体智能的元启发式方法之一是黑猩猩优化算法 (ChOA),其灵感来自黑猩猩在群体狩猎中的个体智力和性动机。该文提出了一种加权ChOA(WChOA)替代方案,以解决大规模数值优化问题中出现的两个主要问题,如低收敛速度和求解高维问题的局部最优陷阱。标准 ChOA 和WChOA 之间的主要区别在于,提供了一个位置加权方程来提高收敛速度并避免局部最优