一种基于Harris-Laplace算法的角点检测方法(Matlab代码实现)

 👨‍🎓个人主页:研学社的博客 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

1.1 Harris-Laplace 检测方法原理

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献


💥1 概述

一幅图像通常包含大量几何结构信息,其中角点对描述物体空间结构和基本特征有着重要作
角点检测( Corner Detection ) [1] 也被广泛应用于目标识别与跟踪、 影像匹配与拼接 计算机视觉处理等领域。
根据检测原理,角点检测可分为两类: 一类是基于结构边缘信息的角点检测[2-6] 这类方法依
据图像结构的边缘特征检测角点,检测效果依赖边缘结构的提取和分割,具有很大的不确定性。
另一类是基于图像灰度信息的角点检测 [7] 这类方法根据像素邻域内灰度梯度变化检测角点,
Harris 算法 、SIFT 算法 、SURF 算法以及一些它们的改进方法。 基于图像灰度信息的角点检测是目前的研究重点[8-10] Harris 等在 1988 年提出的Harris 角点检测算法 [11] ,根据不同方向的像点灰 度变化速率来判断。 经过对几种角点检测算法进行分析,Schmid 等 [12] 发现 Harris 算法不具备尺度 和仿射不变性。 Mikolajczyk Schmid [13] 2004 年提出具有尺度不变性的 Harris-Laplace 检测方 法。 该方法解决了尺度不变性问题,但是其仍存 在极值、 定位精度以及冗余检测等问题

1.1 Harris-Laplace 检测方法原理

 

Harris-Laplace 检测算法的步骤有 如 下 3 步。
1 ) 用高斯核函数与原始图像卷积生成尺度空间,在每层尺度空间中寻找候选角点 P
2 ) 利用迭代法检验每层尺度空间候选角点P 的 LOG 运算值是否是整个尺度空间区域内的极
值点,如果不是则舍弃
3) 计算保留下的候选角点的角点响应值,角 点 \dot{P} 为响应值最大的角点,如果\dot{P}​​​​​​​ 存在则舍弃

 

 P。重复步骤 2) 和 3) 直到\dot{P} 不再变化 。

📚2 运行结果

 

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]高翔,万成浩,李润生.一种基于Harris-Laplace算法的亚像素角点检测方法[J].测绘科学技术学报,2017,34(05):475-480.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值