AOA估计中的MUSIC算法(Matlab代码实现)

文章介绍了针对经典MUSIC算法的局限性,提出了一种改进的根值MUSIC算法,该算法能有效应对搜索空间大和噪声影响大的问题。通过对信噪比、采样数、阵元数等因素的仿真分析,证明了改进算法的有效性,特别是在移动通信系统的到达角估计中的意义。
摘要由CSDN通过智能技术生成

 👨‍🎓个人主页:研学社的博客 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

随着阵列信号处理技术的不断发展,到达角估计(Angle Of Arrival)的研究在移动通信系统中具有重要意义。通过分析经典MUSIC算法,针对其搜索空间较大,受噪声影响较大的因素,提出改进的根值MUSIC算法。对影响MUSIC算法性能的信噪比、采样数、阵元数、入射角度等因素以及根值MUSIC算法进行仿真,仿真结果表明改进的根值MUSIC算法是有效的。

📚2 运行结果

 

 部分代码:%%
% Code name: 2D MUSIC algorithm 
clc
clear 
close all
format long
N=200;fs=2e11;
doa=[40 60]/180*pi;
w=[pi/4 pi/4]'*95e9;
M=10;
Msub=3;
P=length(w);
c=3e8;
lambda=c*2*pi/w(1);
deltad=lambda/2;
% deltad=lambda/1.5;
snr=10;
D=zeros(P,M);
for k=1:P
D(k,:)=exp(-1i*2*[0:M-1]*pi*deltad*sin(doa(k))/lambda);
end
s=2*exp(1i*(w*[1:N]));
x=D'*s;
x=x+awgn(x,snr);
figure,
%% Without spatial smoothing
R_old=x*x';
J=fliplr(eye(M));
R_old=R_old+J*conj(R_old)*J;
[N,~]=eig(R_old);
NN=N(:,1:M-P);
theta=-90:0.5:90;
for ii=1:length(theta)
SS=zeros(1,length(M));
for jj=0:M-1
SS(1+jj)=exp(-1i*2*jj*pi*deltad*sin(theta(ii)/180*pi)/lambda);
end
PP= SS*NN*NN'*SS';
Pmusic_im(ii)=abs(1/PP);
end
Pmusic_im=10*log10(Pmusic_im/max(Pmusic_im));
plot(theta,Pmusic_im,'c');
hold on
%% When we use only one sub sub-array
R_sub_ma=[]; 
for t=1:M-Msub+1
x_sub=x(t:t+Msub-1,:);
R_sub=x_sub*x_sub';
R_sub_ma(t,:,:)=R_sub;
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]韩卫杰. 改进MUSIC算法在AOA估计中的研究[D].西南交通大学,2006.

🌈4 Matlab代码实现

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值