💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
本代码针对微电网的两阶段鲁棒优化调度问题提出了一种别出心裁的方法,与众不同地,它没有沿用大多数情况下应用的CC&G算法,而是采取了一项创新技术——关键场景辨别法。这一技术能够经过数轮迭代精准地锁定最不利的情境。面对光伏发电的不确定性和间断性问题,本代码利用了动态鲁棒优化技术进行有效处理。我们构建了一个考虑电价波动和光伏发电量不确定性的微网两阶段鲁棒优化调度模型,并运用恶劣场景辨别技术将挑战分解为主问题和子问题,采取迭代策略进行求解。子问题的职责是精确定位极其不利的光伏发电场景,而主问题则针对这种特定场景进行单层优化模型求解,这大幅减少了需要考虑的情景总数,有效提高了模型的计算效率。这一研究不仅展现了创新思维的重要性,也为微网优化调度领域带来了新的解决方案。
参考文献:
📚2 运行结果
部分代码:
%导入50个光伏场景数据
Spv=xlsread('光伏数据','测试50场景4迭代','A1:AX24');
disp('读取50组光伏出力场景,结束!');
figure
plot(Spv)
grid
xlabel('时间/t');
ylabel('光伏出力/元');
title('总光伏场景')
%% 定义关键场景集合
j=[1];
P_MP=1;%定义初始值
P_SP=0;%定义初始值
k=0;%定义迭代次数
%设置程序大循环
while(P_MP>P_SP)
display(['迭代还未收敛,当前迭代第 ', num2str(k+1),' 次']);
P_RES=Spv(:,j)';
kk=length(j);
Obj_MP=zeros(kk,24);
P_MP=zeros(1,1);
P_DA=zeros(kk,24);
S_DA=zeros(kk,24);
u_GT=zeros(kk,24);
u_GTon=zeros(kk,24);
u_GToff=zeros(kk,24);
[Obj_MP,P_MP,P_DA,S_DA,u_GT,u_GTon,u_GToff]=Fun_MP(j,P_RES);
display(['第 ', num2str(k+1),' 次','求解主问题,结束!']);
P_MP=value(P_MP);
P_DA_SP=value(P_DA);
S_DA_SP=value(S_DA);
u_GT_SP=value(u_GT);
u_GTon_SP =value(u_GTon);
u_GToff_SP =value(u_GToff);
P_SP_b=[];%定义临时矩阵
%%%%%%%%%%求解子问题各光伏场景的P_SP%%%%%%%%%
%筛选出主问题中的光伏场景
j_SP=[];
for i=1:50 %这里根据场景数修改,1000场景则改为1000
if ismember(i,j)~=1
j_SP=[j_SP,i];
end
end
%定义子问题光伏索引
P_RES_SP=Spv(:,j_SP)';
[Obj_SP,Obj_SP_scene]=Fun_SP(j_SP,P_RES_SP,P_DA_SP,S_DA_SP,u_GT_SP,u_GTon_SP,u_GToff_SP);
display(['第 ', num2str(k+1),' 次','求解子问题,结束!']);
Obj_SP=value(Obj_SP) ;
Obj_SP_scene=value(Obj_SP_scene);
P_SP_b=Obj_SP_scene(1,:);
P_SP=min(P_SP_b);%求出P_SP_b矩阵中的最大值P_SP
%找出最大值P_SP对应的光伏场景
j_b=find(P_SP_b==P_SP);
j1=sort(j);%对主问题中的光伏场景排序
for ii=1:length(j1)
j1(ii)=j1(ii)-ii;
end
m=0;
for ii=1:length(j1)
if j_b>j1(ii)
m=m+1;
end
end
j=[j,j_b+m];%添加最大值P_SP对应的光伏场景
k=k+1;
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。