交替优化ADMM:受限问题、对抗网络和鲁棒模型研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

摘要

数据驱动的机器学习方法在许多工业应用和学术任务中取得了令人印象深刻的性能。机器学习方法通常分为两个阶段:从大规模样本训练模型,以及在部署模型后对新样本进行推断。现代模型的训练依赖于解决涉及非凸、不可微目标函数和约束的困难优化问题,有时速度较慢,通常需要专业知识来调整超参数。虽然推断比训练快得多,但通常对实时应用来说速度还不够快。我们关注可以在训练中被表述为极小极大问题的机器学习问题,并研究交替优化方法作为快速、可扩展、稳定和自动化的求解器。

首先,我们关注经典凸和非凸优化中约束问题的交替方向乘子法(ADMM)。一些流行的机器学习应用包括稀疏和低秩模型、正则化线性模型、总变差图像处理、半定规划和共识分布式计算。我们提出了自适应ADMM(AADMM),这是一个完全自动化的求解器,通过调整ADMM中唯一的自由参数实现快速实际收敛。我们进一步自动化了几个ADMM的变体(放松的ADMM、多块ADMM和共识ADMM),并证明了适用于具有不同参数的ADMM变体的收敛速率保证。我们发布了超过十种应用的快速实现,并使用每个应用的几个基准数据集验证了效率。其次,我们关注生成对抗网络(GAN)的极小极大问题。我们应用预测步骤来稳定随机交替方法,用于训练GAN,并展示了基于GAN的损失对图像处理任务的优势。我们还提出了基于GAN的知识蒸馏方法,用于训练小型神经网络以加速推断,并在经验上研究了加速和准确性之间的权衡。第三,我们展示了对鲁棒模型的对抗训练的初步结果。我们研究了用于攻击和防御通用扰动的快速算法,然后探讨了提高鲁棒性的网络架构。

交替方向法是解决线性约束下的单调可分变分不等式问题的吸引人方法之一。在应用经验中发现,迭代次数与线性约束方程组的惩罚参数密切相关。在原始方法中,惩罚参数是一个常数,但在本文中,我们提出了一种修改后的交替方向法,根据迭代信息每次调整惩罚参数。初步的数值测试表明,自适应调整技术在实践中是有效的。

包含:

自适应松弛(ARADMM,)、自适应共识ADMM(ACADMM)和视觉子类别低秩最小二乘。自适应ADMM(AADMM)、非凸问题的AADMM()和自适应多块ADMM的代码包含在此软件包中。我们还提供了基准方法的实现,如基本ADMM、快速(Nestrov)ADMM、残差平衡和归一化残差平衡。

带有弹性网(l2 + l1)正则化器的线性回归
带有稀疏(l1/l0)正则化器的线性回归
带有(l1/l2)正则化器的逻辑回归
基础追踪
低秩最小二乘
鲁棒PCA(RPCA)
二次规划(QP)
半定规划(SDP)
支持向量机(SVM)
1D/2D去噪与总变差正则化器
图像去噪/恢复/去模糊与总变差正则化器
分布式共识问题:逻辑回归
分布式共识问题:线性回归
典型的非凸问题:特征值问题
典型的非凸问题:相位恢复

📚2 运行结果

部分代码:

%%
% ADMM
opts.adp_flag = 0; %fix tau, no adaptation
[sol1,outs1] = aadmm_lrls(D, c, np, lam1, lam2, opts);
fprintf('vanilla ADMM complete after %d iterations!\n', outs1.iter);

% adaptive ADMM
opts.adp_flag = 5; %AADMM with spectral penalty
[sol2,outs2] = aadmm_lrls(D, c, np, lam1, lam2, opts);
fprintf('adaptive ADMM complete after %d iterations!\n', outs2.iter);

% Nesterov ADMM
opts.adp_flag = 2; % Nesterove ADMM
[sol3,outs3] = aadmm_lrls(D, c, np, lam1, lam2, opts);
fprintf('Nesterove ADMM complete after %d iterations!\n', outs3.iter);

% adaptive ADMM baseline: residual balance
opts.adp_flag = 3; %residual balance
[sol4,outs4] = aadmm_lrls(D, c, np, lam1, lam2, opts);
fprintf('RB ADMM complete after %d iterations!\n', outs4.iter);

% adaptive ADMM baseline: normalized residual balance
opts.adp_flag = 4; %normalized residual balance
[sol5, outs5] = aadmm_lrls(D, c, np, lam1, lam2, opts);
fprintf('NRB ADMM complete after %d iterations!\n', outs5.iter);

%%
legends = {'Vanilla ADMM', 'Fast ADMM', 'Residual balance', 'Normalized RB', 'Adaptive ADMM'};
figure,
semilogy(outs1.tols, '-.g'),
hold,
semilogy(outs3.tols, '-.r');
semilogy(outs4.tols, '--m');
semilogy(outs5.tols, '--', 'Color',[0.7 0.2 0.2]);
semilogy(outs2.tols, 'b');
ylabel('Relative residual', 'FontName','Times New Roman');
ylim([10^(-3) 10]);
xlabel('Iteration', 'FontName','Times New Roman');
legend(legends, 'FontName','Times New Roman');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值