💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
高阶有限元波导计算与分析
摘要—本报告展示了如何通过有限元方法计算任意形状均匀波导的传播模式和截止频率。描述了使用高阶插值多项式的程序,并将结果与解析解进行了比较。此外,讨论了收敛速率和相对误差。相信应用高阶有限元方法的程序可以产生更高精度的波导分析。
有限元方法(FEM)是一种成熟的技术,在许多工程学科如结构和计算流体力学中被广泛应用作为分析和设计工具。在过去的30年中,有限元方法应用于微波元件如波导和天线的兴趣越来越浓厚。关于FEM应用于空波导或均匀波导的文献最早可追溯到上世纪60年代末。最初,在FEM中使用的插值多项式阶数较低,需要大量网格。高阶元素的应用首先由P.Silvester提出。他建议使用高阶插值多项式,子区域的数量不需要比描述边界形状所需的数量更多。通过在每个三角形中找到多项式系数,通过变分程序来获得波导特征值问题的近似解。在这个项目中,相对较高阶(最高达四阶)的元素被应用来解决特征值问题。由于MATLAB强大的计算能力,即使使用高阶元素,元素的数量也不需要太少。详细描述了在MATLAB中实施有限元方法的程序,并展示了解析和数值解。此外,高阶元素带来的好处以不同方式呈现。
📚2 运行结果
部分代码:
% import the mesh data produced by the MATLAB mesh generator. It only
% can be used with the first order FEM
TotalEle = dlmread('Node Number.DAT'); % global node number matrix
TotalCoo = dlmread('Coordinates.DAT'); % node coordinates
Boundaries = dlmread('Boundary.DAT'); % boundary condition matrix
TotalEle = TotalEle';
TotalEle = TotalEle(:,1:3);
TotalCoo = TotalCoo';
Boundaries = Boundaries';
Boundaries = Boundaries(:,1:2);
% calculate the second order mesh elements from the first order meshes
[TotalEle, TotalCoo, Boundaries]= addMiddlePoint(TotalEle, TotalCoo, Boundaries);
% calculate the coefficients Ka and Kb used in the generalized eigenvalue
% equation
[Ka, Kb] = derivationOfEquation(TotalEle, TotalCoo);
noOfElements = size(TotalEle,1);
noOfNodes = size (TotalCoo,1); % total number of nodes
noOfBoundaries = size(Boundaries,1); % total number of nodes on the boundary
% TE modes, solving magnetic field
[D1,V1] = eig(Ka,Kb);
eigenValuesTE = zeros(noOfNodes,1);
eigenVectorsTE = zeros(noOfNodes);
结论:在这个项目中,高阶有限元方法被深入研究,程序是用MATLAB编写的,用于解决矩形均匀波导中的电磁场问题。此外,使用不同阶数元素的程序得到的解表明,更高阶元素的应用会提高解的准确性,而不会增加太多的计算成本。基于二阶和四阶有限元方法,还介绍了数值解准确性与计算成本之间的关系。展示了TE32模式的数值和解析解。此外,为这个项目编写的程序适用于任何边界由直线段组成的波导形状。通过一些修改,该程序能够分析非均匀波导。
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
🌈4 Matlab代码、数据、文章
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取