💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
【多变量输入单步预测】基于CEEMDAN-VMD-CNN-BiLSTM的风电功率预测研究
一、引言
风电作为一种重要的可再生能源,其发电量的波动性和不确定性给风电场运营和电力系统调度带来了挑战。准确的风电功率预测对于优化发电计划、提高发电效率以及电力系统调度和电力市场交易具有重要意义。因此,基于CEEMDAN(自适应噪声完备集合经验模态分解)、VMD(变分模态分解)、CNN(卷积神经网络)和BiLSTM(双向长短期记忆网络)的风电功率预测研究具有重要的应用价值。
二、技术介绍
- CEEMDAN
- 定义:CEEMDAN是一种用于时间序列分析的信号分解方法,它通过引入自适应噪声来克服传统EMD(经验模态分解)方法中的模态混叠问题。
- 作用:在风电功率预测中,CEEMDAN可以将风电功率序列分解为多个本征模态函数(IMF),这些IMF代表了不同频率成分的信号,有助于降低数据的复杂性和波动性。
- VMD
- 定义:VMD是一种非递归的模态分解方法,它基于变分原理将原始信号分解为多个带宽有限的模态分量。
- 作用:在风电功率预测中,VMD可以对CEEMDAN分解得到的高频IMF分量进行进一步分解,以提取更多细节信息,提高预测精度。
- CNN
- 定义:CNN是一种具有卷积层和池化层的神经网络结构,擅长处理图像和时间序列数据中的局部特征。
- 作用:在风电功率预测中,CNN可以提取风电功率序列中的空间特征(如风速、风向等),为后续的BiLSTM预测提供丰富的输入信息。
- BiLSTM
- 定义:BiLSTM是RNN的一种变体,能够同时处理输入序列的正向和反向信息,从而捕捉序列中的长期依赖关系。
- 作用:在风电功率预测中,BiLSTM可以利用风电功率序列的历史数据,捕捉风电功率随时间变化的趋势和规律,提高预测的准确性。
三、研究方法
基于CEEMDAN-VMD-CNN-BiLSTM的风电功率预测研究通常包括以下几个步骤:
- 数据收集与预处理
- 收集风电场的历史风速、风向、温度等气象数据以及相应的风电发电量数据。
- 对数据进行清洗、特征提取和归一化等预处理操作,以消除噪声和量纲不一致的问题。
- 信号分解
- 使用CEEMDAN算法对风电功率序列进行初次分解,得到多个IMF分量。
- 对高频IMF分量使用VMD算法进行二次分解,进一步提取细节信息。
- 特征提取
- 使用CNN对分解后的信号进行特征提取,提取出对风电功率预测有用的空间特征。
- 时序建模与预测
- 将CNN提取的特征作为BiLSTM的输入,使用BiLSTM对风电功率序列进行时序建模。
- 使用训练集数据训练BiLSTM模型,通过调整模型参数以优化模型性能。
- 使用测试集数据对训练好的模型进行预测,评估模型的预测性能。
四、优势与挑战
优势:
- 高精度:CEEMDAN-VMD-CNN-BiLSTM模型能够结合多种方法的优势,提高风电功率预测的精度。
- 鲁棒性强:模型对噪声和异常值具有一定的容忍度,能够在复杂多变的环境下保持稳定的预测性能。
- 适应性强:可以处理非线性、高维的时序数据,适用于复杂的风电预测场景。
挑战:
- 计算复杂度:模型的计算复杂度较高,可能导致模型训练时间较长。
- 参数调优:模型的性能受参数影响较大,需要进行细致的参数调优工作。
- 数据依赖性:模型的预测性能高度依赖于输入数据的质量和数量。
五、未来展望
未来研究可以进一步探索更高效的算法优化方法,提高模型训练速度和预测精度。同时,收集更多样化的数据源(如卫星图像、雷达数据等),以提高模型的泛化能力。此外,还可以开发更精细的模型评估指标,以更全面地评估模型的性能。
📚2 运行结果
部分代码:
% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74 0.8 0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]
%
% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87 0.15 712.77 684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】
%
% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75 0.74 0.87 0.15 716.94 712.77
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72 0.87 0.08 742.81 751.3】
function res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
for i = 1:num_samples
h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
res{i,1}= h1;
h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
res{i,2} = h2;
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.
[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.
[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.
[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取