💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于 TCN-BiGRU 的负荷预测研究是一个涉及时间序列预测和深度学习的领域。TCN(Temporal Convolutional Network)和 BiGRU(Bidirectional Gated Recurrent Unit)是两种用于时间序列数据处理的先进技术。下面是一个关于该研究的简要文档结构和要点:
1. 引言
- **背景与动机**:负荷预测在电力系统中的重要性,以及准确预测负荷对于电力系统的稳定性和可靠性至关重要。
- **研究现状**:传统负荷预测方法(如ARIMA、SARIMA)和现代方法(如深度学习模型)的概述。
2. 理论基础
- **时间卷积网络(TCN)**:
- **定义与结构**:TCN使用卷积层而非递归层来处理时间序列数据,具有长时间依赖捕捉能力和并行处理的优势。
- **优点**:可以通过膨胀卷积实现长时序依赖捕捉,避免了RNN中的梯度消失问题。
- **双向门控递归单元(BiGRU)**:
- **定义与结构**:GRU是一种门控循环神经网络,BiGRU在此基础上增加了双向结构,能够同时捕捉前向和后向的时间依赖。
- **优点**:能处理时间序列数据中的双向信息,提高预测精度。
3. 方法
- **模型架构**:
- **TCN-BiGRU 组合**:首先使用TCN进行特征提取,然后将提取的特征输入到BiGRU中进行建模。
- **TCN 层**:描述TCN的卷积层配置、膨胀率、残差连接等。
- **BiGRU 层**:描述GRU的门控机制、双向处理方式等。
- **数据处理**:
- **数据预处理**:负荷数据的归一化、滑动窗口技术等。
- **特征选择**:如何从原始数据中提取有用特征。
4. 实验与结果
- **实验设置**:
- **数据集**:使用的负荷数据来源(如电力负荷数据集),数据分割方式(训练集、验证集、测试集)。
- **评价指标**:使用的评估指标(如MAE、RMSE、MAPE)来评估模型性能。
- **结果分析**:
- **模型性能**:TCN-BiGRU在负荷预测任务中的表现,与其他方法(如LSTM、传统统计方法)的比较。
- **案例研究**:具体案例分析,模型在实际应用中的效果。
5. 讨论
- **优点**:TCN-BiGRU模型在负荷预测中的优势,如处理长时间序列数据的能力、预测精度等。
- **挑战与局限**:模型的复杂性、计算资源需求、对异常数据的敏感性等。
6. 结论与未来工作
- **总结**:TCN-BiGRU模型的有效性及其在负荷预测中的贡献。
- **未来工作**:进一步优化模型、探索其他深度学习技术在负荷预测中的应用、处理更多实际问题等。
📚2 运行结果
部分代码:
# 初始化存储各个评估指标的字典。 table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2']) for i in range(n_out): # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标 actual = [float(row[i]) for row in Ytest] #一列列提取 # 从测试集中提取实际值。 predicted = [float(row[i]) for row in predicted_data] # 从预测结果中提取预测值。 mse = mean_squared_error(actual, predicted) # 计算均方误差(MSE)。 mse_dic.append(mse) rmse = sqrt(mean_squared_error(actual, predicted)) # 计算均方根误差(RMSE)。 rmse_dic.append(rmse) mae = mean_absolute_error(actual, predicted) # 计算平均绝对误差(MAE)。 mae_dic.append(mae) MApe = mape(actual, predicted) # 计算平均绝对百分比误差(MAPE)。 mape_dic.append(MApe) r2 = r2_score(actual, predicted) # 计算R平方值(R2)。 r2_dic.append(r2) if n_out == 1: strr = '预测结果指标:' else: strr = '第'+ str(i + 1)+'步预测结果指标:' table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%']) return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table # 返回包含所有评估指标的字典。
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.
[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.
[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.
[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.
[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.
[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024.
🌈4 Python代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取