【负荷预测】基于TCN-BiGRU的负荷预测研究(Python代码实现)

                     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于 TCN-BiGRU 的负荷预测研究是一个涉及时间序列预测和深度学习的领域。TCN(Temporal Convolutional Network)和 BiGRU(Bidirectional Gated Recurrent Unit)是两种用于时间序列数据处理的先进技术。下面是一个关于该研究的简要文档结构和要点:

 1. 引言
- **背景与动机**:负荷预测在电力系统中的重要性,以及准确预测负荷对于电力系统的稳定性和可靠性至关重要。
- **研究现状**:传统负荷预测方法(如ARIMA、SARIMA)和现代方法(如深度学习模型)的概述。

 2. 理论基础
- **时间卷积网络(TCN)**:
  - **定义与结构**:TCN使用卷积层而非递归层来处理时间序列数据,具有长时间依赖捕捉能力和并行处理的优势。
  - **优点**:可以通过膨胀卷积实现长时序依赖捕捉,避免了RNN中的梯度消失问题。
  
- **双向门控递归单元(BiGRU)**:
  - **定义与结构**:GRU是一种门控循环神经网络,BiGRU在此基础上增加了双向结构,能够同时捕捉前向和后向的时间依赖。
  - **优点**:能处理时间序列数据中的双向信息,提高预测精度。

 3. 方法
- **模型架构**:
  - **TCN-BiGRU 组合**:首先使用TCN进行特征提取,然后将提取的特征输入到BiGRU中进行建模。
  - **TCN 层**:描述TCN的卷积层配置、膨胀率、残差连接等。
  - **BiGRU 层**:描述GRU的门控机制、双向处理方式等。
  
- **数据处理**:
  - **数据预处理**:负荷数据的归一化、滑动窗口技术等。
  - **特征选择**:如何从原始数据中提取有用特征。

 4. 实验与结果
- **实验设置**:
  - **数据集**:使用的负荷数据来源(如电力负荷数据集),数据分割方式(训练集、验证集、测试集)。
  - **评价指标**:使用的评估指标(如MAE、RMSE、MAPE)来评估模型性能。
  
- **结果分析**:
  - **模型性能**:TCN-BiGRU在负荷预测任务中的表现,与其他方法(如LSTM、传统统计方法)的比较。
  - **案例研究**:具体案例分析,模型在实际应用中的效果。

5. 讨论
- **优点**:TCN-BiGRU模型在负荷预测中的优势,如处理长时间序列数据的能力、预测精度等。
- **挑战与局限**:模型的复杂性、计算资源需求、对异常数据的敏感性等。

 6. 结论与未来工作
- **总结**:TCN-BiGRU模型的有效性及其在负荷预测中的贡献。
- **未来工作**:进一步优化模型、探索其他深度学习技术在负荷预测中的应用、处理更多实际问题等。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值