【无人机】无人机自主避障系统(Matlab实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码


💥1 概述

一、背景与意义: 随着无人机技术的迅速发展,其在各个领域的应用不断拓展,如航拍、物流配送、农业植保、环境监测等。然而,在复杂的飞行环境中,无人机面临着各种障碍物,如建筑物、树木、电线杆等,这使得自主避障成为无人机安全飞行的关键需求。无人机自主避障系统的开发旨在提高无人机的飞行安全性和可靠性,扩大其应用范围。 

二、工作原理: 1. 环境感知:传感器不断扫描无人机周围的环境,获取障碍物的信息。 2. 数据处理:对传感器数据进行处理和分析,识别障碍物并确定其位置和运动状态。 3. 避障决策:根据障碍物信息和当前飞行状态,选择合适的避障策略。 4. 飞行控制:将避障决策转化为飞行控制指令,调整无人机的飞行姿态和轨迹,实现自主避障。

三、应用领域1. 航拍与影视制作:确保无人机在拍摄过程中的安全,获取更稳定、高质量的画面。 2. 物流配送:使无人机能够在城市中安全地进行货物配送,提高配送效率。 3. 农业植保:避免无人机与农作物、电线杆等障碍物碰撞,提高植保作业的准确性和安全性。 4. 环境监测:在复杂的自然环境中进行监测任务,如森林火灾监测、水质监测等。 5. 抢险救灾:快速进入危险区域进行侦察和救援,为救援行动提供支持。 总之,无人机自主避障系统是无人机技术发展的重要方向之一,它将为无人机的安全飞行和广泛应用提供有力保障。

📚2 运行结果

主函数部分代码:

% Define the map
map = [
        0, 0, 0, 1, 0, 0, 0, 0, 0, 0;
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
        0, 0, 0, 0, 0, 0, 0, 0, 1, 0;
        0, 0, 1, 0, 0, 0, 0, 0, 0, 0;
        0, 1, 0, 0, 0, 1, 0, 0, 0, 0;
        0, 0, 0, 0, 0, 1, 0, 0, 0, 0;
        0, 0, 0, 0, 0, 1, 0, 0, 0, 0;
        0, 0, 1, 0, 0, 0, 0, 0, 0, 0;
        0, 0, 0, 0, 0, 0, 0, 0, 1, 0;
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0
];

% Define start and goal positions
start = [1, 1];
goal = [10, 10];

% Define RRT parameters
max_iter = 1000; % Maximum number of iterations
step_size = 1.0; % Step size for extending the tree

% Run RRT algorithm
[path, tree] = rrt(map, start, goal, max_iter, step_size);

% Plot the path and tree
plot_rrt(map, path, tree);


function [path, tree] = rrt(map, start, goal, max_iter, step_size)
    % Initialize the tree with the start node
    tree = [start, 0]; % Each node contains x, y, and parent index
    
    for iter = 1:max_iter
        % Sample a random point in the map
        random_point = [randi(size(map, 1)), randi(size(map, 2))];
        
        % Find the nearest node in the tree to the random point
        nearest_node_idx = nearest_neighbor(tree(:, 1:2), random_point);
        nearest_node = tree(nearest_node_idx, :);
        
        % Extend the tree towards the random point
        new_node = steer(nearest_node(1:2), random_point, step_size);
        
        % If the new node is not in collision with obstacles
        if ~check_collision(map, nearest_node(1:2), new_node)
            % Add the new node to the tree
            tree = [tree; new_node, nearest_node_idx];
            
            % Check if the goal is reached
            if norm(new_node - goal) < step_size
                path = reconstruct_path(tree, size(tree, 1));
                return;
            end
        end
    end
    
    % If the goal is not reached within the maximum iterations
    disp('Goal not reached within maximum iterations');
    path = [];
end

function nearest_node_idx = nearest_neighbor(tree, random_point)
    % Find the index of the nearest node in the tree to the random point
    distances = vecnorm(tree - random_point, 2, 2);
    [~, nearest_node_idx] = min(distances);
end

function new_node = steer(nearest_node, random_point, step_size)
    % Move from the nearest node towards the random point by step_size
    direction = random_point - nearest_node;
    distance = norm(direction);
    if distance <= step_size
        new_node = random_point;
    else
        new_node = nearest_node + (direction / distance) * step_size;
    end
end

function in_collision = check_collision(map, nearest_node, new_node)
    % Check if the line segment between nearest_node and new_node intersects with obstacles
    x1 = nearest_node(1);
    y1 = nearest_node(2);
    x2 = new_node(1);
    y2 = new_node(2);
    
    in_collision = any(map(round(linspace(x1, x2, 100)), round(linspace(y1, y2, 100))));
end

function path = reconstruct_path(tree, goal_idx)
    % Reconstruct the path from the goal node to the start node
    path = tree(goal_idx, 1:2);
    parent_idx = tree(goal_idx, 3);
    while parent_idx ~= 0
        path = [tree(parent_idx, 1:2); path];
        parent_idx = tree(parent_idx, 3);
    end
end

function plot_rrt(map, path, tree)
    % Plot map
    imagesc(map);
    colormap(flipud(gray));
    hold on;
    
    % Plot path
    if ~isempty(path)
        plot(path(:, 2), path(:, 1), 'r', 'LineWidth', 2);
    end
    
    % Plot tree
    plot(tree(:, 2), tree(:, 1), 'bo', 'MarkerSize', 3);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]陈子昂. 竹林场景下无人机避障系统的研究[D].浙江农林大学,2024.DOI:10.27756/d.cnki.gzjlx.2024.000137.

[2]徐健,戴芬良.基于人工智能技术的无人机避障系统研究[J].软件,2023,44(10):149-151.

🌈4 Matlab代码

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值