基于到达时间的无关联多点定位(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

1. 基本原理与定义

2. 关键技术实现方法

3. 典型应用场景

4. 技术挑战与未来方向

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、文章下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于到达时间的无关联多点定位研究

摘要:
多点定位系统重建发射电磁或声信号的目标的位置。定位所采用的测量方法是发射信号的到达时间(TOA),由已知位置处的多个空间分布的接收器测量。我们提出了一种新的多点定位算法,用于定位在未知时间发送不可区分信号的多个目标。也就是说,每个接收器仅测量一组TOA,与目标没有关联。我们的方法不需要任何先验信息。因此,它可以提供不相关的静态测量,随后引入单独的跟踪器,或者为多目标跟踪器提供初始化例程。

背景:电磁和声学信号具有携带信息的各种属性,并在收到时在多个地点,可以利用它来获取信号发射器(目标)。在多点定位(MLAT)中,到达时间(TOA)用于目标定位。一个典型的例子是飞机监视,其中每架飞机上的发射器都会发射所谓的A/C模式信号。由于该标准只允许4096个地址,因此有通常在一个空域中有多架具有相同地址的飞机。模式A/C传输由询问器站触发,因此,许多目标通常发射时间很短彼此之后。因此,接收器通常无法仅通过TOA的时间距离来区分目标。所提出方法的其他应用场景包定位发出不可区分声事件的物体。最新技术:携带信息的信号属性例如,接收到的关于其发射器位置的信息信号强度(RSS)[2]和到达角(AOA),以及被称为轴承测量[3]、[4]。最精确的通常,定位估计可以通过TOA获得测量[5]、[6]或TOA差异[7]、[8]、[9]用于精确时间同步的接收器网络。这是通常称为MLAT。在二级监测中雷达(SSR),信号传输被主动触发由询问者发出,发送询问与接收回答之间的持续时间对目标响应的询问和接收给出了目标距离的额外指示[10]。然而,如果目标需要处理询问的时间延迟为这些信息应该与以下内容一起使用,但具体内容尚不清楚护理。两种常见的SSR变体是模式S和模式A/C。

对于多目标跟踪,主要的挑战是测量值和目标之间的关联是未知的。如果这些关联是已知的,因为传输包含对于单个代码,问题可以简单地归结为单个目标跟踪,分别针对每个目标。多目标跟踪可以用联合概率数据关联滤波器[11]来处理,但这需要枚举所有可能的关联假说。其他方法,如概率
假设密度滤波器避免了测量关联在他们的公式[12]、[13]中。更多有趣的可能性是像这样的对称和关联不变变换SME过滤器[14]、内核-SME过滤器[15]、[16]或基于关联不变集距离测度的方法[17], [18]. 然而,大多数方法都是为以下目的而提出的线性测量模型或全量程测量仅限于维度,不能轻易应用于非线性子空间测量,如TOA,用于发射器定位。贡献:在本文中,我们将考虑一个多
目标定位设置具有逼真的TOA测量值暗示非线性测量模型。我们的方法可以用于立即定位多个传输中的物体在没有任何先验知识的情况下,识别出完全相同的消息。

详细文章见第4部分。

1. 基本原理与定义

基于到达时间(Time of Arrival, TOA)的无关联多点定位是一种通过测量信号从目标到多个接收点的传播时间,结合信号传播速度计算距离差,最终确定目标位置的定位技术。其核心特点在于无需目标与接收点之间预先建立通信链路或关联关系,降低了系统复杂度,提高了灵活性。

技术分支

  • TOA定位:通过计算信号传播时间与电波速度的乘积得到距离,利用多个基站的距离测量值构建圆(二维)或球面(三维)交点定位目标。需高精度时间同步(如GPS同步)。
  • TDOA定位:基于信号到达不同基站的时间差,构建双曲线或双曲面模型,交点即为目标位置。相比TOA,TDOA无需目标与基站时钟同步,但需基站间同步。

无关联特性:指接收器仅记录TOA测量值,无需预先关联目标与测量数据,适用于多目标场景(如无人机群、车辆编队),可简化系统设计并降低硬件成本。

2. 关键技术实现方法
  1. 时间同步技术

    • 中央授时(CT) :通过主站统一校准各接收点时钟,但依赖高精度通信链路。
    • 分布式授时(DT) :利用GNSS秒脉冲或原子钟驯服晶振实现异步系统同步,如ADS-B信号同步法,精度可达纳秒级。
    • 差分匹配滤波与多项式拟合:通过信号预处理(如S模式前导脉冲能量累积)提升TOA估计精度,降低采样误差。
  2. 多目标数据关联与解模糊

    • 可靠性评估函数:通过切换参考节点构建校准子阵列,筛选真实源并消除虚假定位点(如TDOA序列一致性检验)。
    • 联合稀疏恢复算法:结合压缩感知与信道状态信息,建立多测量向量模型,解决多源信号混叠问题。
    • 混合优化算法:交替优化目标位置与发射时间,结合非线性最小二乘与组合优化,降低计算复杂度。
  3. 抗干扰与误差抑制

    • 多径效应抑制:采用超分辨率时延估计(如OFDM信道频域分析)或动态门限报头检测算法,减少NLOS(非视距)误差。
    • 迭代修正法:通过泰勒级数展开法迭代优化初始估计值,结合误差反推剔除异常测量组。
3. 典型应用场景
  1. 民航监视

    • 场面监视MLAT系统:利用机场部署的远端站接收ADS-B信号,通过TDOA定位飞机位置,兼容现有二次雷达系统,成本低于传统雷达。
    • 广域多定位(WAM) :覆盖航路监控,支持多目标无关联跟踪,适用于密集空域管理。
  2. 智能交通与物联网

    • 车联网定位:结合GNSS、IMU与TOA测量,通过MEMA-TOA(多时段多天线)方法解决恶劣环境下的位置模糊问题。
    • 工业物联网:在复杂室内环境中实现设备无源定位,如仓储物流中的AGV路径规划。
  3. 应急与安防

    • 泄漏源定位:通过声信号TOA检测化工管道泄漏点,结合分布式授时实现快速响应。
    • 反无人机系统:利用无关联多点定位跟踪非法无人机,抑制多径干扰。
4. 技术挑战与未来方向

当前挑战

  • 时间同步精度:大规模系统中分布式时钟同步的稳定性与成本问题,尤其在GNSS拒止环境下。
  • 多源信号混叠:密集目标场景下的数据关联模糊,虚假定位点剔除难度高。
  • 环境适应性:NLOS、多径效应及电磁干扰对TOA估计的影响仍需优化算法。

未来发展方向

  • 多传感器融合:结合RSSI、AOA、TOA等多维信息,通过贝叶斯学习或神经网络提升鲁棒性。
  • AI驱动算法:利用深度学习(如LSTM、CNN-BiGRU)处理非线性测量模型,实现动态环境下的自适应定位。
  • 量子时钟同步:探索量子纠缠授时技术,突破现有同步精度极限。
  • 边缘计算架构:分布式处理TOA数据,降低中心节点负载,提升实时性。

📚2 运行结果

部分代码:
 

%% Problem Definition (Ground Truth) 

% Sensors
s = [0,0; 0,1; -1,-1; 1,-1; 1,0.7; 0.8,-0.3; -1,.3]; % [#Sensors x xy]
% s = (rand(30,2)-.5) .* [3 2]; % [#Sensors x xy]

% Aircraft start/stop
a = [-1,-.3; -1,.7; -0.5,0.5] + [.5 0]; % [#Aircraft x xy] initial locations

% Transmission Times
b = [0; 0.5; 0.2]; % [#Aircraft x 1]

%% Generate Exact Measurements 

assert(size(a,1)==numel(b))
A = size(a,1); % #Aircraft
S = size(s,1); % #Sensors

% Exact range between sensor i and aircraft j, plus offset. 
% x,y has to be in 3rd dimension
g = @(S,a,b) sqrt( sum((a-S).^2,3) ) + b; 

% [#Aircraft x #Sensors] measurement matrix for known aircraft position a and offset b 
y = @(a,b) sort( g( permute(s,[3,1,2]), permute(a,[1,3,2]), permute(b,[1,3,2]) ), 1);

%% Plot Setup

name = sprintf('AssocFreeMLAT%uA%uS',A,S);

% Initialize Figure
fig = figure(938739);
clf(fig)
set(fig, 'Color','white', 'Name',[name,'_Result'], 'NumberTitle','off');
ax = axes(fig, 'NextPlot','add', 'XGrid','on', 'YGrid','on');
xlabel(ax,'x'); ylabel(ax,'y'); %box(ax,'on')
axis(ax, 'equal')

% Plot Ground Truth Targets & Sensors
h2 = MLAT.plot_objects('Parent',ax, 'Sensors',s, 'Aircraft',a, 'Mode','Symbol');
%set([h2.a;h2.s], 'FontName','Sans') % symbols must be available in font

% Plot result
sco = scatter(ax, [],[], 'DisplayName','Estimation Result');
set(sco, 'MarkerEdgeColor','black', 'LineWidth',2, 'SizeData', 500, 'Marker','s')

% Axis Limits 
axis(ax, [-1.8,1.8,-1.2,1.2]) 

%Legend
lg = legend(ax);
set(lg, 'Location','northoutside')

%% Association-Free MLAT on Noisy TOAs 

% Noise Level
stddev = 0.01;

% TOA Measurements
yGT = y(a,b); % [#Aircraft x #Sensors] ground truth TOA 
% Add Noise
y0 = yGT;
y0 = y0 + stddev*randn(size(y0));  % [#Aircraft x #Sensors] noisy TOA  
% Matrix -> List Representation
sens_ind_all = y0*0 + (1:S); % [#Aircraft x #Sensors] sensor indices  
y0 = [y0(:), sens_ind_all(:)]; % [#Measurements x 2] 
% Remove 30% of the TOA measurements (some receivers don't catch the TOA)  

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]李江洪.基于无线传感节点到达时间差的定位算法设计[J].广西民族大学学报:自然科学版, 2012, 18(4):4.

[2]宫峰勋,李孟然.多点定位系统到达时间估计算法的性能分析[J].激光与光电子学进展, 2022, 59(13):10.

[3]宫峰勋 Gong Fengxun,李孟然 Li Mengran.多点定位系统到达时间估计算法的性能分析[J].Laser & Optoelectronics Progress, 2022.

🌈Matlab代码、文章下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值