【故障诊断】【连续小波变换】基于连续小波变换的轴承故障诊断研究[凯斯西储大学轴承数据集、西储大学数据](Python代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、连续小波变换(CWT)原理

二、西储大学(CWRU)数据集

三、基于CWT的轴承故障诊断研究

四、CWT与其他方法的比较

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据、文档说明书下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于连续小波变换(Continuous Wavelet Transform,CWT)的轴承故障诊断研究是机械故障诊断领域的一个重要方向,特别是在利用西储大学(Case Western Reserve University,CWRU)数据集进行分析时。以下是对该研究的详细探讨:

一、连续小波变换(CWT)原理

连续小波变换是一种多分辨率的时频分析方法,它通过将信号与一系列小波函数进行内积,从而得到信号在不同时间和频率上的分布信息。这种方法不仅克服了传统的傅里叶变换不能反映信号局部特性的不足,而且弥补了短时傅里叶变换只有单一分辨率的缺陷。

在CWT中,小波函数是一个在有限时间内非零,而在其他时间上快速衰减的函数。它可以通过伸缩和平移来匹配信号中的不同成分。对于给定的信号,CWT会计算小波函数与信号在不同尺度(即频率)和位置(即时间)上的内积,从而得到一个小波系数矩阵。这个小波系数矩阵反映了信号在不同时间和频率上的能量分布,可以用于后续的故障特征提取和分类。

二、西储大学(CWRU)数据集

西储大学提供的轴承数据集是机械故障诊断领域广泛使用的标准数据集之一。该数据集主要用于旋转机械的轴承故障检测,并通过安装在电机轴承附近的加速度传感器采集得到。数据集记录了正常运行状态以及不同类型的轴承故障状态,包括轴承内圈、外圈和滚动体(球)损坏。每种故障情况还区分了不同的故障尺寸和不同的负载条件。

CWRU数据集的结构包括正常基线数据、12k驱动端轴承故障数据、48k驱动端轴承故障数据和12k风扇端轴承故障数据。这些数据为研究人员提供了丰富的故障信号数据,使得他们能够开发和验证各种数据分析、特征提取和机器学习算法。

三、基于CWT的轴承故障诊断研究

在利用CWT进行轴承故障诊断时,首先需要将采集到的轴承振动信号进行预处理,包括去噪、滤波等步骤。然后,利用CWT将振动信号转换为小波系数矩阵,以便观察信号在时间和频率上的变化。

接下来,可以通过提取小波系数矩阵中的特征信息来进行故障诊断。这些特征信息可以包括小波系数的均值、方差、峰值等统计特征,也可以包括通过进一步处理得到的小波能量谱、小波包络谱等频域特征。这些特征信息可以用于训练机器学习模型,如支持向量机(SVM)、随机森林、卷积神经网络(CNN)等,以实现轴承故障的自动识别和分类。

例如,有研究使用CWRU轴承故障数据集,通过CWT将振动信号转换为小波系数矩阵,并提取了时域和频域特征。然后,利用这些特征训练了SVM分类器,实现了对轴承故障的高精度识别。实验结果表明,该方法在轴承故障诊断中具有较高的准确性和可靠性。

四、CWT与其他方法的比较

与传统的傅里叶变换和短时傅里叶变换相比,CWT具有更高的时频分辨率和更好的局部化性能。它能够捕捉到信号中的瞬态成分和突变信息,这对于轴承故障诊断等需要精确分析信号局部特性的应用场景具有重要意义。

此外,CWT还可以与其他方法相结合,如与深度学习模型相结合,以提高故障诊断的准确性和效率。例如,有研究将CWT与卷积神经网络(CNN)相结合,通过CWT将振动信号转换为小波时频图,并将小波时频图作为CNN的输入进行训练。实验结果表明,这种方法在轴承故障诊断中取得了比传统方法更好的性能。

五、结论与展望

基于连续小波变换的轴承故障诊断研究在机械故障诊断领域具有重要的应用价值。通过利用CWRU数据集进行分析,可以实现对轴承故障的高精度识别。未来,随着深度学习技术的不断发展,可以进一步探索更加高效的特征提取和分类方法,以提高轴承故障诊断的准确性和可靠性。同时,也可以将该方法应用于其他机械设备的故障诊断中,为工业生产的智能化和自动化提供更加有力的支持。

📚2 运行结果

生成时频图像数据集:

连续小波变换CWT参数选取 

比较不同尺度:

 

不同带宽 变化二

 

 

 

探索同种故障,不同尺寸之间的差异: 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

 [1]李酉戌.基于卷积神经网络的网络故障诊断模型[J].软件导刊, 2017, 16(12):4.

[2]谭博韬,黄民,刘跃,等.基于CNN-LSTM故障诊断的自动扶梯监测软件设计[J].电子测量技术, 2023, 46(12):1-7.

[3]吴聪,李梦男,李琨.基于数据划分和ODM-CNN的滚动轴承故障诊断[J].煤矿机械, 2023.

[4]杨慧,张瑞君,陈国良.基于ICNN-BiGRU的轴承故障诊断模型[J].Journal of Mechanical & Electrical Engineering, 2022, 39(11).

[5]霍志浩,尹安,陈洁灵,等.基于CNN-LSTM的轴系系统故障诊断系统设计与实现[C]//第32届中国过程控制会议(CPCC2021)论文集.2021.

🌈Python代码、数据、文档说明书下载

jupyter、pycharm两种版本都有

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值