【水下机器人】6自由度欠驱动自主水下机器人的反馈线性化仿真研究(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

6自由度欠驱动自主水下机器人反馈线性化仿真研究

一、6自由度欠驱动自主水下机器人(AUV)的基本概念与结构组成

二、反馈线性化方法在水下机器人控制中的应用原理

三、动力学建模与仿真工具

四、现有研究案例与参数获取方法

五、反馈线性化在AUV中的实现步骤

六、典型仿真配置方案

七、总结与展望

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

6自由度欠驱动自主水下机器人反馈线性化仿真研究

一、6自由度欠驱动自主水下机器人(AUV)的基本概念与结构组成
  1. 六自由度定义
    6自由度指AUV在三维空间中的运动能力,包括三个平移自由度(纵荡Surge、横荡Sway、垂荡Heave)和三个旋转自由度(横摇Roll、纵摇Pitch、转艏Yaw)。各自由度的运动特性如下:

    • 平动自由度:沿x(Surge)、y(Sway)、z轴(Heave)的直线运动。

       

       

    • 旋转自由度:绕x轴(Roll)、y轴(Pitch)、z轴(Yaw)的转动。
  2. 欠驱动特性
    欠驱动指控制输入数少于自由度数的系统。例如,AUV可能仅配置4个推进器(8个输出量)以实现6自由度控制,导致需通过冗余推力分配和姿态协同间接控制部分自由度。实际应用中,横滚(Roll)常通过配平抑制,仅需5自由度控制。

  3. 推进系统结构

    • 典型推进器布局
      采用冗余推进器(如四推进器)实现6自由度控制,通过推力分配优化算法(如能耗最小化)解决无穷多解问题。例如,等腰三角形布置的导流罩可增强垂荡控制稳定性。
    • 浮力调节机构:用于上浮/下潜和纵倾角控制,减少推进器能耗。
二、反馈线性化方法在水下机器人控制中的应用原理
  1. 核心步骤

    • 输入-状态线性化
  2. 确定相对阶(输出对输入的导数次数);

  3. 构造非线性变换 z=T(x),将状态方程线性化;

  4. 设计反馈控制律 u=α(x)+β(x)v 。

    • 输入-输出线性化
      类似步骤,但仅线性化输出动态方程。
  5. 优势与挑战

    • 优势:将非线性系统转化为线性系统,简化控制器设计。
    • 挑战
  • 依赖精确动力学模型,对参数误差敏感;
  • 需保证零动态稳定性,避免内部发散。
  1. 改进方向
    • 模糊反馈线性化:结合模糊逻辑动态调整控制器参数,提升鲁棒性。
    • 自适应观测器:补偿模型误差和外部扰动(如水流),降低对模型精度的依赖。
三、动力学建模与仿真工具
  1. MATLAB/Simulink应用
    • 动力学建模:通过Simulink搭建6自由度非线性模型,集成质量矩阵、科里奥利力、流体阻尼等参数。
    • 控制算法设计:利用Control System Toolbox设计PID、滑模或强化学习控制器。
    • 实时仿真:支持硬件在环(HIL)测试,生成C/C++代码直接部署至嵌入式系统。


2. ROS集成

  • Gazebo仿真:结合ROS Gazebo插件模拟水下环境(如水动力、推进器噪声)。

  • 多工具协同:MATLAB通过ROS Toolbox订阅/发布话题,实现与Gazebo的实时数据交互。
四、现有研究案例与参数获取方法
  1. 典型案例

    • UX-1机器人:基于反馈线性化的轨迹跟踪控制器,在10m×6m×5m水箱中验证,性能优于LQR控制器。
    • USM镇定控制:模糊反馈线性化结合自适应扩张状态观测器,湖试中6维均方根误差降低至0.1–1.0量级。
  2. 模型参数辨识方法

    • 试验法:通过水池试验获取水动力参数(如阻尼系数)。
    • CFD仿真:计算流体动力学分析推进器推力与流场关系。
    • Kane方程建模:避免复杂相互作用力计算,提升建模效率(如X舵AUV)。
五、反馈线性化在AUV中的实现步骤
  1. 动力学模型构建
    基于牛顿-欧拉方程建立6自由度非线性模型:

    其中 M 为惯性矩阵,C 为科里奥利力,D 为阻尼矩阵,g 为恢复力。

  2. 坐标变换与解耦
    通过非线性变换将模型分解为线性子系统和零动态,例如将纵荡、横荡、转艏通道解耦。

  3. 控制律设计
    设计反馈控制律补偿非线性项,例如:

    其中 v 为线性化后的虚拟控制输入。

六、典型仿真配置方案
  1. MATLAB/Simulink流程

    • 模型搭建:使用Simscape Multibody构建机械结构,Simulink设计控制算法。
    • ROS集成:通过ROS Toolbox连接Gazebo,实现传感器数据(如IMU、声呐)的实时交互。
    • 代码生成:使用Embedded Coder生成ROS节点代码,部署至NVIDIA Jetson等嵌入式平台。
  2. 多工具协同案例

    • 路径跟踪仿真
  3. Gazebo模拟水下环境与AUV动力学;

  4. MATLAB设计反馈线性化控制器;

  5. ROS传递控制指令并记录轨迹数据。

七、总结与展望

反馈线性化为欠驱动AUV控制提供了系统化解耦方案,但其依赖模型精度和实时计算能力仍是挑战。未来方向包括:

  • 自适应与鲁棒融合:结合L1自适应控制增强抗扰能力;
  • AI增强设计:利用强化学习优化反馈线性化参数;
  • 分布式架构:支持多AUV协同控制,提升任务复杂度。

通过MATLAB/Simulink与ROS的深度集成,可实现从模型验证到实际部署的全流程闭环,加速水下机器人技术的工程化应用。

📚2 运行结果

部分代码:

Vd = M\(tau -g1 -D1*V-C1*V);
Xdd = J(1:3,1:3)*Vd(1:3) + J(1:3,1:3)*S(V(4:6))*V(1:3); 
Xdot(1:6) = Xd;
Xdot(7:12) = Vd;
ux1 = -0.01*1000*cos(10*t) + 100*(-0.01*100*sin(10*t) - Xdd(1)) + 100*(0.01*10*cos(10*t) - Xd(1)) + 1000*(0.01*sin(10*t) - x);
uy1 = 0 + 1*(0 - Xdd(2)) + 1*(0.01 - Xd(2)) + 1*(0.01*t - y);
uz1 = 0 + 1*(0 - Xdd(3)) + 1*(0.01 - Xd(3)) + 1*(0.01*t - z); 
Rnb = J(1:3,1:3);
Rbn = inv(Rnb);
us = Rbn*[ux1;uy1;uz1];
ux = us(1);
uy = us(2);
uz = us(3);
% u = 0;
% v = 0;
% w = 0;
% p = 0;
% q = 0;
% r = 0;
% theta = 0;
% phi = 0;
% ux = 0;
% uy = 0;
% uz = 0;
Xdot(13) = fd1(f1,f2,f3,p,phi,q,r,theta,u,ux,uy,uz,v,w);
Xdot(14) = fd2(f1,f2,f3,p,phi,q,r,theta,u,ux,uy,uz,v,w);
Xdot(15) = fd3(f1,f2,f3,p,phi,q,r,theta,u,ux,uy,uz,v,w);
end

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]张利军,齐雪,赵杰梅,等.垂直面欠驱动自治水下机器人定深问题的自适应输出反馈控制[J].控制理论与应用, 2012, 29(10):6. 

[2]陈天明.基于事件触发的欠驱动水下机器人轨迹跟踪控制研究[D].燕山大学,2023.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值