💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
欠驱动机器人协同一致研究:机械臂与移动机器人协同控制技术
摘要: 在过去几十年中,机器人学已经成为一个巨大的研究领域。由于机器人通常是可以移动的机械结构,旨在帮助人类完成任务,因此我们可以看到各种类型的机器人,例如地面移动机器人、空中机器人(无人机——UAV)、水下机器人、机械臂(操纵器),甚至是这些类型的组合,例如移动操纵器。
为了我们的研究目的,我们将专注于地面车辆移动机器人和机械臂的建模与控制。移动机器人的应用范围非常广泛,从简单的仓库任务到自动驾驶汽车以及未知户外环境的探索等。另一方面,机械臂主要用于工业领域。
本研究致力于实现地面移动机器人和机械臂之间的协同一致,使它们能够到达一个共同的位置。更具体地说,目标是控制这两个机器人,使它们在满足某些给定约束条件的同时,达到一个共同的姿态,并且尽量最大化与机械臂相关的某个给定函数。
一般来说,解决这个问题有两种方法,即离线方法和在线方法,这两种方法都在本文中进行了研究。离线方法包括两个不同的步骤,第一步是预先确定两个机器人相遇的合适最终位置,第二步是分别控制每个机器人,使它们都达到之前选定的姿态。与此同时,在线方法则涉及对机器人的直接控制,试图在没有任何关于机器人最终目的地的先验知识的情况下实现我们的目标。
在本论文中,针对离线和在线情况,提出了一些基于机械臂的冗余度分析以及关于移动机器人的单轮车控制算法的控制方案。首先对提出的解决方案进行了数学分析,以确保控制方案的稳定性,然后将它们应用于仿真中,以确认其有效性。
一、欠驱动机器人定义与特性
欠驱动机器人(Underactuated Robots)是指控制输入数量少于系统自由度的机械系统,其核心特征在于 “以少控多” 。此类系统因非线性、强耦合性和时变性而面临以下挑战:
- 动力学复杂性:如Acrobot体操机器人需依赖非线性控制算法;
- 自适应能力:欠驱动机械手通过弹性元件实现抓取形状自适应;
- 能耗与成本优势:减少驱动装置可降低质量、能耗及制造成本。
二、机械臂与移动机器人协同控制的关键技术
1. 协同运动规划与动力学建模
- 运动学统一建模:通过D-H方法建立移动平台与机械臂的全局雅可比矩阵,结合卡尔曼滤波校正末端误差。
- 动力学耦合分析:考虑移动平台与机械臂的动量交换及扰动,设计基于能量和虚拟合成杆的非线性控制理论。
- 分层优化策略:例如基于可达性图的路径规划,确保末端执行器作业质量。
2. 智能控制算法
- 强化学习(RL) :DDPG算法实现移动平台与机械臂的连续动作协同,动态调整协同代价权重。
- 混合视觉伺服(HVS) :融合位置与视觉信息,解决非完整移动基座与机械臂的同步控制。
- 自适应滑模控制:用于双机械臂搬运系统,提升轨迹跟踪鲁棒性。
3. 避障与防碰撞
- 传感器融合:激光雷达、视觉传感器实时感知环境;
- 冲突避免算法:RRT、MPC-DWA-CBF等规划器优化轨迹;
- 人工势场法改进:结合斥力函数实现无人船编队避碰避障。
4. 系统冗余协调
- 冗余自由度分配:通过优化目标(如路径最短)协调移动平台与机械臂运动;
- 车臂一体化控制:针对冗余驱动平台设计自适应运动分配方法。
三、协同一致性的技术难点
- 动力学耦合与扰动:机械臂运动对移动平台产生力矩扰动,需引入鲁棒控制策略。
- 非完整约束与自由度分配:如轮式移动平台无法横向移动,需结合路径跟踪与机械臂逆运动学。
- 实时性与计算复杂度:强化学习训练周期长,需优化奖赏函数。
- 多目标优化冲突:例如移动平台加速度平顺度与机械臂末端精度间的平衡。
四、应用现状与典型案例
- 工业与物流:
- 欠驱动码垛机械手;
- 复合机器人(MMX5)实现SLAM与运动规划协同。
- 农业与采摘:
- 欠驱动水果采摘机械手;
- 苹果采摘机器人末端自适应抓取。
- 海洋与空间:
- 欠驱动AUV编队控制;
- 空间垃圾清理机械臂。
- 多机器人系统:
- 异构无人舰艇编队协同;
- 多UUV围捕控制。
五、现有研究文献与技术文档
- 理论与算法:
- 虚拟合成杆理论;
- 基于势博弈的避碰避障围捕。
- 实验与仿真:
- MIT Acrobot开源平台;
- ROS-Gazebo移动机械臂仿真。
- 专利与框架:
- 多臂协同控制框架专利(CN119858171A);
- 混合视觉伺服控制。
六、未来研究方向
- 智能化深度扩展:结合联邦学习实现多机器人知识共享。
- 硬件-算法协同设计:轻量化驱动装置与自适应控制联合优化。
- 人机协作安全:柔顺控制与碰撞检测算法改进。
- 动态环境适应性:基于深度强化学习的在线轨迹重规划。
结论
欠驱动机器人协同控制是机器人领域的前沿课题,其核心在于通过 动力学建模、智能算法与系统优化 解决“以少控多”的复杂性。未来需进一步突破 实时性、鲁棒性与多目标协同 的瓶颈,推动其在智能制造、农业自动化、深海探测等场景的广泛应用。
📚2 运行结果
部分代码:
%% Error initialization
ez= zeros(1,samples);
ephi = zeros(1,samples);
Hplot = zeros(1,samples);
%% Direction of apporach
trans = getTransform(robot,qd(:,1),end_eff_name);
zin = trans(3,4);
zf = 0.5;
zmax = max(zf,zin) + 0.1;
T = Time - 3;
t2 = linspace(0,T,T/dt);
w = 2 * pi / T;
zd1 = 1/2 * (1 - cos(w * t2)) * (zmax - zin) + zin;
zd2 = 1/2 * (1 + cos(w * t2)) * (zf - zmax) + zmax;
%Desired z trajectory
zd = zd1 .* (1 - heaviside(t2 - T/2)) + zd2 .* heaviside(t2 - T/2);
%Its derivative
zddot = (1/2*w*sin(w*t2)*(zmax - zin)) .* (1 - heaviside(t2 - T/2)) + ...
(-1/2 * w * sin(w*t2)*(zf - zmax)) .* heaviside(t2 - T/2);
zd = [zd zf*ones(1,3/dt)];
zddot = [zddot zeros(1,3/dt)];
%% Simulation-Finding the Point, Redundancy Analysis
phi_d = pi/4;
ad = [0; 0; -1];
zds = zf;
for i = 1:samples
%Manipulator control
trans = getTransform(robot,qd(:,i),end_eff_name);
Re = trans(1:3,1:3);
p = trans(1:3,4);
ze = p(3);
ae = Re(:,3);
r = sqrt(ae(1:2)' * ae(1:2));
ez(i) = zds - ze;
ephi(i) = phi_d - acos(ad' * ae);
fullJac = geometricJacobian(robot,qd(:,i),end_eff_name);
for j=1:ndofs
J(:,j) = fullJac(:, dofs(j));
end
Jo = J(1:3,:);
Hplot(i) = Hfunc(J);
Hplot(i);
% Redundant
Sae = [0 -ae(3) ae(2); ae(3) 0 -ae(1); -ae(2) ae(1) 0];
Jnew = [J(6,:); (ad' * Sae * Jo)/r];
Jnewplus = Jnew' / (Jnew * Jnew' + 0.0000 * eye(2));
ud = [kp * (zds - ze); ko * (phi_d - atan2(r,-ae(3)))];
% ud = [kp * (zd(i) - ze) + zddot(i); ko * (phi_d - atan2(r,-ae(3)))];
qdsmall = Jnewplus * ud + (eye(4) - Jnewplus * Jnew) * ...
(kh * gradH(dofs,J,robot,qd(:,i), end_eff_name));
%Update
for j=1:ndofs
qdot(dofs(j)) = qdsmall(j);
end
qdot_des(:,i) = qdot;
qd(:,i+1) = qd(:,i) + qdot*dt;
% Joint limits
% for j=1:ndofs
% if qd(dofs(j),i+1) >= maxlim(j)
% qd(dofs(j),i+1) = maxlim(j);
% elseif qd(dofs(j),i+1) <= minlim(j)
% qd(dofs(j),i+1) = minlim(j);
% end
% end
end
%Final pose
qf = qd(:,samples);
qfsmall = [qf(dofs(1)); qf(dofs(2)); qf(dofs(3)); qf(dofs(4))];
tf = getTransform(robot,qf,end_eff_name);
pf = tf(1:3,4);
aef = tf(1:3,3);
%% Plotting
figure;
subplot(2,2,1)
plot(t,ephi);
ylabel('Angle error');
xlabel('Time')
grid on
subplot(2,2,2)
plot(t,ez);
ylabel('Z error')
xlabel('Time')
grid on
subplot(2,2,3:4)
plot(t,Hplot,'Linewidth',2);
ylabel('H')
xlabel('Time')
grid on
%% Unicycle Mobile Robot Parameter initialization
xm = zeros(3,samples);
xm(:,1) = [2.3; -2.3; 0.6]; %x,y,theta
ulim = 1.0;
phiLim = 0.7;
km = [0.8 2.5 3];
posed = [pf(1:2); atan2(aef(2), aef(1))]; %desired pose (x,y,theta)
transo = 0;
%% Simulation-controlling the robots
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]李艳杰,马岩,钟华,等.一种欠驱动移动机器人运动模式分析[J].自动化与仪表, 2013, 28(9):4.
[2]徐昕.增强学习及其在移动机器人导航与控制中的应用研究[D].国防科学技术大学,2002.
[3]张勇.拖挂式移动机器人反馈镇定与反向运动控制研究[D].哈尔滨工业大学,2011.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取