基于遗传算法的多旅行商问题研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、问题概述

二、遗传算法简介

三、基于遗传算法的多旅行商问题求解

1. 编码方式

2. 初始种群生成

3. 适应度函数

4. 选择操作

5. 交叉操作

6. 变异操作

7. 迭代过程

四、实验设计与结果分析

1. 实验设计

2. 结果分析

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议粉丝按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一、问题概述

多旅行商问题(Multiple Traveling Salesman Problem,M-TSP)是旅行商问题(TSP)的扩展。在TSP中,一个旅行商需要访问一系列城市,且每个城市只能访问一次,目标是找到一条最短的路径。而在M-TSP中,有多个旅行商,每个旅行商各自访问一系列城市,每个城市仍然只能被一个旅行商访问一次,目标是找到一组最短的路径,使得所有旅行商的总路径长度最短。

二、遗传算法简介

遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传学机理的搜索算法。它通过模拟生物进化过程,如选择、交叉和变异等,来搜索问题的最优解。遗传算法具有很强的全局搜索能力和广泛的适应性,适用于解决复杂的优化问题。

三、基于遗传算法的多旅行商问题求解

1. 编码方式

在遗传算法中,问题的解被编码成染色体。对于M-TSP问题,可以采用自然数编码方式,即将每个城市编号为一个自然数,染色体由一系列城市编号组成,表示一个旅行商的访问顺序。对于多个旅行商的情况,可以将染色体分割成多个子串,每个子串代表一个旅行商的访问顺序。

2. 初始种群生成

随机生成一定数量的染色体作为初始种群。每个染色体代表一个可能的解,即一组旅行商的访问顺序。

3. 适应度函数

适应度函数用于评估染色体的优劣。对于M-TSP问题,适应度函数可以定义为所有旅行商的总路径长度的倒数,即总路径长度越短,适应度越高。

4. 选择操作

根据适应度函数选择优秀的染色体作为父代,用于生成下一代。常用的选择策略包括轮盘赌选择、锦标赛选择等。

5. 交叉操作

交叉操作是遗传算法中产生新个体的主要方式之一。对于M-TSP问题,可以采用顺序交叉法或部分映射交叉法等交叉策略。这些策略能够保持染色体的合法性和有效性。

6. 变异操作

变异操作能够增加种群的多样性,避免算法陷入局部最优解。对于M-TSP问题,可以采用交换变异、逆转变异等变异策略。这些策略能够随机改变染色体的部分结构,从而产生新的解。

7. 迭代过程

不断重复选择、交叉和变异操作,生成新的种群。在迭代过程中,根据适应度函数评估新种群的优劣,并保留优秀的个体。当达到预设的迭代次数或满足其他终止条件时,输出最优解。

四、实验设计与结果分析

1. 实验设计

选择一定数量的城市作为实验对象,并随机生成城市间的距离矩阵。设置遗传算法的参数,如种群规模、变异概率、迭代次数等。运行遗传算法求解M-TSP问题,并记录每次迭代的最优解和平均解。

2. 结果分析

分析遗传算法在求解M-TSP问题时的性能表现。包括算法的收敛速度、最优解的质量、解的稳定性等方面。同时,可以对比不同参数设置下算法的性能差异,以优化算法参数。

五、结论与展望

遗传算法在求解M-TSP问题时表现出良好的性能。通过合理的参数设置和策略选择,算法能够在较短时间内找到近似最优解。然而,遗传算法也存在一些局限性,如易陷入局部最优解、参数设置敏感等。未来可以进一步研究改进遗传算法的策略和方法,以提高算法的性能和稳定性。

综上所述,基于遗传算法的多旅行商问题研究具有重要的理论和实践意义。通过不断优化算法策略和参数设置,可以进一步提高算法的性能和实用性。

📚2 运行结果

部分代码:

merging_prob = 0.3;

% Verify Inputs
[N,dims] = size(xy);
[nr,nc] = size(dmat);
if N ~= nr || N ~= nc
    error('Invalid XY or DMAT inputs!')
end
n = N - 1; % Separate Start/End City

% Sanity Checks
salesmen = max(1,min(n,round(real(salesmen(1)))));
min_tour = max(1,min(floor(n/salesmen),round(real(min_tour(1)))));
pop_size = max(8,8*ceil(pop_size(1)/8));
num_iter = max(1,round(real(num_iter(1))));
show_prog = logical(show_prog(1));
show_res = logical(show_res(1));

% Initializations for Route Break Point Selection
num_brks = salesmen-1;
dof = n - min_tour*salesmen;          % degrees of freedom
addto = ones(1,dof+1);
for k = 2:num_brks
    addto = cumsum(addto);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]王海龙,周辉仁,郑丕谔,等.基于遗传算法的多旅行商问题研究[J].计算机应用研究, 2009(5):4.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值