💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要
共识问题是分布式计算和多智能体系统(MAS)中的一个基础问题。通过深入研究和多种方法的探讨,本文讨论了一种针对固定拓扑结构的三阶积分器智能体的通用共识算法。报告的基础建立在背景理论之上,包括图论、矩阵理论和控制理论——这些理论涵盖了本文的关键概念和背景,并因其在现代工程中的广泛应用和灵活性而备受关注。随后,本报告探讨了关于共识在区块链和多智能体系统中的应用的现有文献,这有助于理解更广泛的背景,并为研究提供动力。本研究的关键发现验证了高阶积分器智能体网络的共识协议,同时在研究名义模型的变化(包括不同来源的干扰,如噪声、正弦输入)以及时间延迟效应方面也取得了重要进展。通过劳斯-赫尔维茨稳定性判据建立了达成共识所需的参数条件,并通过稳定性分析(根轨迹和奈奎斯特判据)进行了验证。结果表明,在调整前后,智能体均能达成共识,这引发了新的问题,并可能对关键发现产生影响。
1 问题
分布式系统是由一组网络组件组成的,它们协同工作以表现成一个单一实体。为了表现成一个单一实体,它们必须就“某些”数据值达成一致,即达成共识。为了实现这一点,存在一些算法,用于指导每个智能体(也称为共识协议)。这些协议必须具备容错性、弹性,并能够处理有限数量的故障进程。有两种方法:分布式方法和集中式方法。由于集中式解决方案存在缺点,因此将采用分布式方法。解决共识问题并朝着理想解决方案努力(无故障/必须容忍进程故障)是必要的,因为共识在网络中有许多应用,例如自主编队飞行、通信网络的控制、传感器网络中的分布式传感器融合、基于群体的计算等。如果在每对节点之间都存在双向路径,则称图是简单强连通的或强连通的。在这种情况下,节点将代表一个智能体。
2 目标
目标是实现并仿真线性连续时间多智能体系统的共识协议。项目成果将是 MATLAB 程序和 Simulink 模型,用于评估固定拓扑结构系统下各种共识算法的性能,包括一些现实场景(包括干扰、恶意攻击)。首先分析的是江等人 [1] 在高阶积分器系统共识中描述的方法。本文采用的方法将作为基础,因为类似的动态特性是未知的,同时参考 [2] 和 [3] 的内容,并根据项目需求调整过程。
3 范围
使用甘特图进行计划以管理任务,并为每个主要任务和子任务分配大致的时间框架,但同时保持灵活性,考虑到事情可能不会按计划进行。例如,背景研究可能比预期花费更长时间,后续可能会发现某些主题需要更多研究,可能会出现数据丢失或软件问题,而且由于生病等原因,可能会在某个阶段出现低效率的情况。需要对相关主题进行背景研究,包括图论、矩阵理论和控制理论,并复习这些主题。为了加深理解,可能会研究一些著名的共识算法。确定智能体的几何布局将验证理解,并在 MATLAB 上进行仿真,以直观地展示复杂的系统。Simulink 模型将在更现实的情况下测试这些方法。
2.1 问题
分布式系统是由一组网络组件组成的,它们协同工作以表现成一个单一实体,而多智能体系统(MAS)是由一组(智能)智能体组成的。为了让所有组件表现成一个单一实体,它们必须就“某些”数据值达成一致,即达成共识。为了实现共识,需要使用算法(也称为共识协议)来选择一个所有系统组件都能同意的结果。这些协议必须具备容错性、弹性,并能够处理有限数量的故障进程。
解决共识问题有两种方法:分布式方法和集中式方法。集中式解决方案在去中心化系统中是脆弱的,因为网络中存在单点故障,可能导致单一功能故障,进而使整个系统失效。文献 [4] 对这些缺点进行了更详细的讨论,因此,集中式解决方案对于共识协议而言是不可取的,因为它们无法实现高可用性和可靠性的目标。相反,这激发了对分布式共识解决方案的兴趣。
解决共识问题并朝着理想解决方案努力(无故障且必须容忍进程故障)是必要的,因为共识在网络中有广泛的应用,例如自主编队飞行、通信网络的控制、传感器网络中的分布式传感器融合、基于群体的计算等 [4]。
2.2 目标
目标是实现并仿真线性连续时间多智能体系统的共识协议。项目成果将是 MATLAB 程序和 Simulink 模型,用于评估固定拓扑结构系统下各种共识算法的性能,包括一些现实场景(包括干扰和恶意攻击)。首先分析的是江等人 [1] 在高阶积分器系统共识中描述的方法。本文采用的方法将作为基础,因为类似的动态特性是未知的,同时参考 [2] 和 [3] 的内容,并根据项目需求调整过程。
2.3 范围
本报告将回顾相关文献和背景理论,如图论、矩阵理论和控制理论,并研究文献 [1] 的基础内容。将确定智能体的几何布局,并在 MATLAB 上进行仿真,以直观地展示复杂的系统。Simulink 模型将在更现实的情况下测试这些方法。随后,通过分析、设计和实现所需网络中的动态特性,验证讨论中的理论计算。项目成果将贯穿整个项目,支持和验证引入的概念,并辅助线性时不变系统的稳定性分析。最后,在报告末尾介绍项目概述以及可能的未来改进和发展方向,并基于已完成的研究和实现进一步探索网络系统,进行相关扩展。
2.4 MATLAB 和 Simulink
MATLAB 是由“Mathworks”开发的高性能工具,主要用于数值计算。该软件因其高效性和易于使用的环境而被工业界和学术界的工程师和科学家广泛使用。算法实现、函数绘制以及矩阵操作(以及其他功能)都可以在一个环境中完成。与手动进行大规模矩阵的数学运算相比,后者容易出错且效率低下,因此并不实用。相比之下,MATLAB 比数学计算知识引擎(例如 WolframAlpha、Symbolab)或绘图计算器(例如 Desmos)更适合进行数值计算,因为这些工具不适合处理复杂的函数和 lengthy 计算,因此无法与之相比。
12 结论、未来工作与反思
12.1 结论
本文对江等人所描述的共识协议进行了分析,适用于一个由四个节点组成的期望群体网络。MATLAB 和 Simulink 仿真展示了线性系统的动态特性,并成功支持和验证了理论计算。
图论为图网络拓扑结构提供了基础,并引入了描述图的相关矩阵:拉普拉斯矩阵和邻接矩阵。矩阵理论对于特征值(有助于确定状态变量之间的关系、输入响应以及系统的稳定性)至关重要,还涉及状态空间系统表示,并引入了新概念:克罗内克积和盖尔圆盘定理(适用于相对稳定性分析)。控制理论也是本项目的基础,引入了如劳斯-赫尔维茨稳定性判据等新概念,这对于推导达成共识的条件是必要的。四节点图网络的系统动态由矩阵 Ω 描述,并通过特征值图(全部位于开左半平面)进行了全面评估。
本文详细扩展了这些理论中的关键概念,以便为后续工作提供扩展空间,其中一些已成功实现。例如,从共识扩展到同步、研究时间延迟以及探索根轨迹和奈奎斯特稳定性分析,以探索系统的鲁棒性并引入系统灵敏度。
详细文章见第4部分。
📚2 运行结果
部分代码:
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、Simulink仿真、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取