认知无线电中的能量检测算法研究(Matlab代码实现)

       💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

认知无线电中的能量检测算法研究

一、认知无线电概述及其对能量检测的需求

二、能量检测算法的基本原理与工作机制

三、性能评估指标

四、近年研究趋势与算法优化

五、实际应用案例

六、挑战与未来方向

七、总结

📚2 运行结果

2.1 不同的N值

2.2 不同的SNR

2.3 不同的噪声不确定性

2.4 不确定噪声和动态阈值比较

2.5 所有案例比较

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

认知无线电中的能量检测算法研究

一、认知无线电概述及其对能量检测的需求

认知无线电(Cognitive Radio, CR)是一种通过智能感知环境并动态调整通信参数的先进无线技术,其核心目标是提高频谱利用率。其工作机制遵循“感知-决策-行动”循环,其中频谱感知是关键技术。能量检测算法作为频谱感知的核心手段之一,通过检测信号能量判断频谱空闲状态,成为实现动态频谱接入的基础。

二、能量检测算法的基本原理与工作机制
  1. 核心原理

  2. 能量检测基于接收信号功率的统计特性,通过比较信号能量与预设阈值判断主用户(Primary User, PU)是否存在。其数学表达式为:

  3. 技术优势

    • 通用性:无需先验信号信息,适用于多种信号类型。
    • 低复杂度:计算简单,硬件实现成本低。
    • 实时性:适合动态频谱环境中的快速检测。
  4. 局限性

    • 噪声不确定性:低信噪比(SNR)时,噪声波动易导致误判。
    • 阈值敏感:固定阈值在动态环境中性能下降,需自适应调整。
三、性能评估指标

能量检测算法的性能通过以下指标衡量:

  1. 检测概率(Pd) :正确检测到主用户存在的概率。
  2. 误报概率(Pfa) :主用户不存在时误判为存在的概率。
  3. ROC曲线:反映Pd与Pfa的权衡关系,用于评估不同SNR下的综合性能。
  4. 计算效率:处理时间和资源消耗,尤其在实时系统中至关重要。
  5. 鲁棒性:在衰落信道(如瑞利、奈奎斯特衰落)下的稳定性。

示例:在AWGN信道中,当SNR为-3 dB至0 dB时,Pd可达90%以上,而Pfa低于0.01。

四、近年研究趋势与算法优化
  1. 动态阈值技术

    • 双阈值法:通过设定上下限减少噪声波动影响,例如自适应双阈值协同检测技术(ADTC)将Pd提升至95%以上。
    • 可变阈值能量检测(VTED) :根据噪声方差动态调整阈值,在低SNR下Pd提高约20%。
  2. 协同频谱感知
    多用户协作通过信息融合(如OR、AND规则)增强检测性能。实验表明,协同检测在SNR=-10 dB时,Pd可从单用户的40%提升至协作后的80%。

  3. 机器学习融合

    • 深度学习模型通过训练大量信号数据,克服噪声不确定性,在复杂环境中Pd达92%以上。
    • 迁移学习用于适应新信号类型,减少模型重复训练成本。
  4. 全盲检测算法
    联合迭代噪声估计与能量检测,无需先验噪声信息,在观测时长≥20时,Pd可达90%。

五、实际应用案例

以运行结果为准。

  1. 无线通信系统

    • 在5G NR中,能量检测用于动态分配未授权频段(如5 GHz ISM频段),提升频谱效率。
    • 案例:双门限检测技术在实验环境中实现95%的检测准确率,误判率低于5%。
  2. 智能电网与物联网

    • 电力系统中检测异常能耗,算法检出率超92%,误报率低于10%。
    • 物联网传感器通过低功耗能量检测实现频谱共享,延长设备续航。
  3. 音频与工业检测

    • PCM音频能量检测用于实时音量调节,标准化输出简化数据分析。
    • 工业设备故障诊断中,能量谱分析识别轴承磨损,精度达90%以上。
六、挑战与未来方向
  1. 主要挑战

    • 低SNR性能:SNR低于-10 dB时,Pd急剧下降,需结合协同检测或深度学习。
    • 噪声估计误差:噪声功率波动导致阈值漂移,引发“SNR墙”现象。
    • 硬件限制:实时系统中采样率与计算资源的平衡问题。
  2. 优化方向

    • 混合检测方案:能量检测与循环平稳特征检测结合,提升复杂环境下的鲁棒性。
    • 自适应算法:如基于VSSLMS的自适应能量检测,在高Pd(>0.9)和低Pfa(~0.05)间取得平衡。
    • 量子计算应用:探索量子算法加速大规模信号处理,突破传统计算瓶颈。
七、总结

能量检测算法作为认知无线电频谱感知的基石,其研究不断向智能化、协同化方向发展。尽管面临低SNR和噪声不确定性的挑战,但通过动态阈值、机器学习融合及协同感知等技术的创新,其性能显著提升。未来,结合边缘计算与量子计算,能量检测有望在6G、工业物联网等领域实现更广泛的应用。

📚2 运行结果

2.1 不同的N值

2.2 不同的SNR

2.3 不同的噪声不确定性

2.4 不确定噪声和动态阈值比较

2.5 所有案例比较

部分代码:

%% Simulation to plot Probability of Detection (Pd) vs. Probability of False Alarm (Pf) 
for m = 1:length(Pf)
    
    i = 0;i2=0;i3=0;i4=0;
for kk=1:10000 % Number of Monte Carlo Simulations
 n = randn(1,L); n2 = sqrt(1.01).*randn(1,L);%AWGN noise with mean 0 and variance 
 %s = sqrt(snr).*randn(1,L); % Real valued Gaussina Primary User Signal 
 s = sqrt(snr).*bpsk_w;
 %s = 1/sqrt(2)*sqrt(snr).*randn(1,L)+randn(1,L);
 y = s + n;y2 = s + n2; % Received signal at SU
 energy = abs(y).^2;  energy2 = abs(y2).^2;% Energy of received signal over N samples
 energy_fin =(1/L).*sum(energy);energy_fin2 =(1/L).*sum(energy2); % Test Statistic for the energy detection
 thresh(m) = (qfuncinv(Pf(m))./sqrt(L))+ 1;  thresh2(m) = (qfuncinv(Pf(m)).*1.02./sqrt(L))+ 1.02;thresh3(m) = ((qfuncinv(Pf(m))./sqrt(L))+ 1)./1.002;thresh4(m) = ((qfuncinv(Pf(m)).*1.02./sqrt(L))+ 1.02)./1.001;% Theoretical value of Threshold, refer, Sensing Throughput Tradeoff in Cognitive Radio, Y. C. Liang
 if(energy_fin >= thresh(m))  % Check whether the received energy is greater than threshold, if so, increment Pd (Probability of detection) counter by 1
     i = i+1;
 end
  if(energy_fin2 >= thresh2(m))  % Check whether the received energy is greater than threshold, if so, increment Pd (Probability of detection) counter by 1
     i2 = i2+1;

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]董淑雅.认知无线电中宽带频域能量检测算法研究[D].海南大学,2016.

2]虞贵财,罗涛,乐光新.认知无线电系统中协同能量检测算法的性能研究[J].电子与信息学报, 2009(11):5.

[3]吴进波,罗涛,乐光新.认知无线电系统中的两判决门限能量检测算法[J].高技术通讯, 2009, 19(9):4.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值