💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
天空图像和光伏发电预测的研究非常有意义,因为它可以帮助优化光伏发电系统的运行和管理,提高发电效率,并有效地利用可再生能源资源。
天空图像与光伏发电预测研究综合分析
一、天空图像在光伏预测中的应用现状
-
数据源类型与特征提取
天空图像数据主要分为地基云图和卫星云图两类:- 地基云图:通过全天空成像仪捕捉高时空分辨率的云动态,能够直接反映局部云层遮挡情况,但存在观测范围有限(通常仅覆盖半径5-10公里)、设备安装维护成本高的问题。例如,智信能源的专利通过球形天空图像投影技术,结合太阳位置信息与晴空辐照度函数,提升特征提取的精度。
- 卫星云图:提供大范围云覆盖率(CFR)、云顶高度(CTH)等地表辐照度分布信息,但空间分辨率较低(通常为公里级),定位到具体电站时易产生误差。研究通过多源遥感数据融合(如云覆盖率、太阳辐照度)增强模型输入。
-
关键技术挑战
- 数据局限性:地基云图依赖昂贵的全天空成像仪,而卫星数据获取难度高且更新频率不足。
- 特征丢失风险:传统卷积自编码器(CAE)在提取云图像特征时可能丢失关键属性,影响预测精度。
- 时间范围限制:超短期预测的有效时间通常小于15分钟,受云层移动速度和视场限制。
二、光伏发电预测的核心方法
-
物理方法与统计方法
- 物理模型:基于太阳辐射传输方程,需精确的光伏组件参数和气象数据,建模复杂且抗干扰能力差。
- 统计模型:依赖历史数据,如线性回归、时间序列分析,无需组件参数但受限于数据质量。
-
机器学习与深度学习
- 传统机器学习:如梯度提升决策树(GBDT)、随机森林,用于处理云量特征与发电量的非线性关系。
- 深度学习模型:
- CNN-LSTM混合网络:结合卷积神经网络(CNN)的空间特征提取与长短期记忆网络(LSTM)的时间序列建模能力,适用于天空图像序列分析。
- Vision Transformer(ViT) :通过自注意力机制捕捉全局云动态,与GRU结合提升时间序列预测精度。
- 迁移学习与物理信息融合:如云遮蔽指数(CSI)标准化方法,增强模型跨站点泛化能力。
三、天空图像与预测技术结合的典型案例
-
多源数据融合模型
- 智信能源专利框架:整合地基云图、气象数据和晴空辐照度函数,通过球形图像投影和CNN-LSTM网络实现超短期预测,均方误差降低28%。
- Stanford SKIPP’D数据集:包含对齐的天空图像与光伏发电数据,支持15分钟级预测,采用ConvLSTM处理时空特征。
-
图像分割与特征增强
- 云遮挡建模:利用Unet网络分割云图像,结合随机森林预测模型,精度提升11.56%。
- 静态空间分析:引入ViT编码器提取全局云层分布,与GRU结合优化时间流动信息的捕捉。
-
动态云运动追踪
- 云量最大值(CMVs)预测:通过连续云图像匹配云结构,假设云速恒定,预测辐照度突变。
- 质心移动算法:预测卫星云图未来轨迹,定位云遮挡区域。
四、现存问题与未来方向
-
技术瓶颈
- 设备成本与数据精度:地基云图设备昂贵,卫星数据空间分辨率不足。
- 模型泛化能力:多数研究依赖单一电站数据,跨区域适用性有限。
-
创新方向
- 多模态数据融合:结合雷电定位、大气电场数据(如山区雷电预警案例),提升复杂天气下的预测鲁棒性。
- 实时边缘计算:利用5G传输高清天空图像,实现云端协同的分钟级预测。
- 物理-数据联合驱动:将清晰天空模型(如McClear)与深度学习结合,分解辐照度动态。
五、典型算法框架与数据来源
研究案例 | 核心技术 | 数据来源 | 算法框架 |
---|---|---|---|
智信能源超短期预测 | 多源数据融合、球形图像投影 | 地基云图、气象数据、太阳辐射 | CNN-LSTM + 梯度提升决策树 |
Stanford SKIPP’D数据集 | ConvLSTM时空建模 | 天空图像、光伏发电时序数据 | 双编码器(图像+LSTM) |
基于ViT-GRU的预测 | 视觉Transformer + GRU | 天空相机图像、历史发电数据 | ViT编码器 + GRU时序分析 |
云分割随机森林模型 | Unet图像分割 + 随机森林 | 地面云图、电站发电数据 | 图像分割 → 特征输入 → 回归预测 |
结论
天空图像在光伏预测中的应用已从单一数据源发展为多模态融合,结合物理模型与深度学习的混合框架显著提升了超短期预测精度。未来需进一步解决数据获取成本、模型泛化性及复杂天气适应性等问题,推动技术向实时化、智能化和跨区域协同方向发展。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]李红萍.地基天空图像中云团的特征提取与辨识模型研究[D].华北电力大学;华北电力大学(保定),2017.
[2]童建军.面向分布式光伏超短期功率预测的复杂云团建模研究[D].浙江工业大学,2014.
[3] Sun, Y., Venugopal, V., Brandt, A.R., 2019. Short-term solar power forecast with deep learning: Exploring optimal input and output configuration. Sol. Energy 188, 730–741.
[4]林琳、刘譞、康慧玲.一种基于神经网络的天空图像到太阳辐照度的映射模型[J].电子测量技术, 2020, 43(14):5.DOI:CNKI:SUN:DZCL.0.2020-14-014.
[5] Sun, Y., Szűcs, G., Brandt, A.R., 2018. Solar PV output prediction from video streams using convolutional neural networks. Energy Environ. Sci. 11, 1811–1818.
[6] Nie, Y., Sun, Y., Chen, Y., Orsini, R., Brandt, A., 2020. PV power output prediction from sky images using convolutional neural network: The comparison of sky-condition-specific sub-models and an end-to-end model. J. Renew. Sustain. Energy 12, 046101.