💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
部署无线传感器节点是为了从现场收集有用的信息,但它们对电池电源的限制促使我们考虑节能路由协议,以便它们可以在更长的时间内运行。我们研究了在网络中拥有多条链的优势,每个链的最顶层节点(称为聚合器)从其下方的节点收集数据并将其传输到接收器。在拟议的方案中,每个区域中的链条作为PEGASIS。我们还研究了考虑网络中的异构性如何使网络的生命周期延长一个重要的时期。我们假设网络中的一小部分节点拥有额外的能量。我们通过模拟表明,与传统的数据聚合方案相比,将异构性引入网络会导致更长的生命周期,持续时间随着考虑的额外能量而增加。
无线传感器节点通常部署在偏远和无法访问的区域。补充这些节点的能量是非常困难的。因此,节能布线非常重要。协议需要具有能量意识,以延长网络的使用寿命。像直接通信协议和最小传输能量协议[1]这样的方法在这方面非常无效。在 DC 中,每个节点将其数据传输到接收器。因此,远离接收器的节点会快速排出。在 MTE 中,发往接收器的数据通过最靠近接收器的中间节点进行路由。因此,靠近汇的节点成为中间节点的概率更高,这将导致它们更快地死亡。
在本文中,我们提出了一种新的多链方案,我们称之为MAMC(多聚合器多链),其中网络分为10个区域,每个区域的链作为PEGASIS。聚合器节点从其下节点收集数据,并将聚合数据传输到接收器节点。将网络划分为多个链有助于在整个网络中平均分配能量负载。因此,传感器网络的性能得到改善。我们还展示了网络中具有异构性的优势。
用于异构无线传感器网络的多聚合器多链路由协议研究
一、异构无线传感器网络(HWSN)的基本特性与挑战
-
异构性定义与节点分类
异构无线传感器网络由多种类型节点组成,包括监测节点、接力节点和簇节点。这些节点在硬件能力(如处理速度、存储容量)、能源供应(电池容量差异)、通信范围(链路异构性)以及任务分配(数据采集、中继、聚合)等方面存在显著差异。例如,Tyndall 25mm节点配备ATmega128L微控制器,而10mm节点采用Nordic nRF9E5芯片,分别承担复杂任务和低功耗场景。 -
动态性与实时性要求
HWSN需适应节点移动性、链路质量波动和拓扑变化。例如,在医疗或工业监测场景中,执行器节点需对传感器数据快速响应,要求路由协议支持低延迟传输。 -
能量效率与网络寿命
节点能量受限是核心挑战。传统单一路径协议易导致热点区域能量快速耗尽,而分层结构(如分簇路由)可通过负载均衡延长网络寿命。例如,BECC算法通过动态调整簇头选举周期,使高能量节点承担更多任务,实现异构节点的同步能耗。 -
安全与数据完整性
数据聚合过程需兼顾安全性与效率。基于椭圆曲线密码(ECC)的密钥管理方案在密钥协商时间和通信开销上优于传统方法,同时需解决聚合节点被俘获时的数据篡改风险。
二、多聚合器机制的设计原理与作用
-
功能定位与角色划分
聚合器节点(Aggregator)负责区域内数据的收集、冗余消除、压缩及特征提取。例如,MAMPR协议将网络划分为多个聚合器区域,每个区域由高能量节点担任聚合器。
引用示例:MAMC方案将网络分为10个区域,每个区域构建类似PEGASIS的链式结构,聚合器节点负责向上层传输数据。 -
动态聚合器选择策略
聚合器选择需综合考虑剩余能量、地理位置和链路质量。MeMLO技术通过多标准(如剩余能量、邻居变化率)动态选举聚合器,避免固定节点导致的能量不均衡。
优化效果:与传统LEACH相比,MeMLO在5000-7000轮模拟中存活节点数提升20%。 -
数据聚合与传输优化
聚合技术可减少数据传输量。例如,基于贝叶斯推断的去中心化聚合机制可融合多传感器数据,降低网络负载。实验显示,此类机制可减少30%的总传输次数。
三、多链路路由协议的设计原理与现有方案
-
多链路架构的优势
多链路路由通过并行传输提升吞吐量,并利用路径冗余增强可靠性。例如,基于同伦类型的表面网络路由算法可生成多条备选路径,当主路径失效时快速切换。
性能对比:RCER协议通过链路质量感知,数据包交付率较传统方案(如TBC、LEACH)提升19-31%。 -
路由度量与链路选择
路由决策需综合考虑链路质量、拥塞程度和能量消耗。MIMP-OLSR协议引入MAC层阻塞度、邻居变化率和MPR_S邻居数目三个指标,实现负载感知和拓扑适应。
仿真结果:在无人机自组网中,MIMP-OLSR的端到端时延降低25%,吞吐量提高18%。 -
跨层优化与多信道利用
多信道路由协议可减少自干扰。例如,基于多无线电接口的协议通过固定与动态信道分配,使五信道网络的容量提升5倍。
四、多聚合器与多链路的协同技术难点
-
动态拓扑适配
节点移动或能量耗尽导致聚合器角色频繁切换,需设计轻量级拓扑发现机制。例如,基于HELLO消息的邻居发现协议需与聚合器选举周期同步。 -
负载均衡与能量均衡
多链路分配需避免聚合器过载。例如,MAMPR协议通过多路径路由将数据分散到不同链,结合能量感知算法动态调整路径权重。 -
安全与同步性挑战
多链路传输需保证数据一致性。基于μTESLA协议的广播认证机制可确保聚合树中数据源的真实性,但需解决跨链时间同步问题。 -
跨层干扰管理
多链路可能引入信道竞争。跨层设计(如DSDV协议结合物理层重传概率)可优化链路选择,减少冲突。
五、整合多聚合器与多链路的设计策略
-
分层架构设计
采用“区域划分-链内路由-聚合器间路由”三层结构:- 区域划分:基于节点密度和能量分布,使用K-means聚类算法划分聚合器区域。
- 链内路由:在链内采用能量感知的贪婪转发(如PEGASIS改进方案)。
- 聚合器间路由:构建以基站为根的聚合树,采用多跳地理路由。
-
动态路径选择算法
结合鲸鱼优化算法(WOA)与多标准决策,实时评估路径的能耗、延迟和可靠性。例如,H-LEACH协议将延迟降低至传统方案的30%。 -
仿真与性能验证
- 能效对比:MAMC方案在Matlab仿真中显示网络生命周期延长40%。
- 可靠性测试:RCER协议在高负载场景下数据包丢失率低于5%。
六、未来研究方向
- AI驱动的动态路由:结合强化学习优化多链路分配。
- 跨协议兼容性:研究多聚合器机制与现有标准(如Zigbee、LoRa)的融合。
- 边缘计算集成:在聚合器节点部署轻量级AI模型,实现本地数据处理。
结论
多聚合器多链路由协议通过分层架构、动态资源分配和多链路冗余,有效解决了HWSN的能量效率、可靠性和扩展性问题。未来需进一步探索智能算法与跨层设计的结合,以应对更复杂的应用场景。
📚2 运行结果
部分代码:
%Election of Cluster Heads for Advanced nodes
if( ( S(i).ENERGY==1 && ( temp_rand <= ( padv / ( 1 - padv * mod(r,round(1/padv)) )) ) ) )
countCHs=countCHs+1;
packets_TO_BS=packets_TO_BS+1;
PACKETS_TO_BS(r+1)=packets_TO_BS;
S(i).type='C';
S(i).G=100;
C(cluster).xd=S(i).xd;
C(cluster).yd=S(i).yd;
plot(S(i).xd,S(i).yd,'k*');
distance=sqrt( (S(i).xd-(S(n+1).xd) )^2 + (S(i).yd-(S(n+1).yd) )^2 );
C(cluster).distance=distance;
C(cluster).id=i;
X(cluster)=S(i).xd;
Y(cluster)=S(i).yd;
cluster=cluster+1;
%Calculation of Energy dissipated
distance;
if (distance>do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Emp*4000*( distance*distance*distance*distance ));
end
if (distance<=do)
S(i).E=S(i).E- ( (ETX+EDA)*(4000) + Efs*4000*( distance * distance ));
end
end
end
end
end
STATISTICS(r+1).CLUSTERHEADS=cluster-1;
CLUSTERHS(r+1)=cluster-1;
%Election of Associated Cluster Head for Normal Nodes
for i=1:1:n
if ( S(i).type=='N' && S(i).E>0 )
if(cluster-1>=1)
min_dis=sqrt( (S(i).xd-S(n+1).xd)^2 + (S(i).yd-S(n+1).yd)^2 );
min_dis_cluster=1;
for c=1:1:cluster-1
temp=min(min_dis,sqrt( (S(i).xd-C(c).xd)^2 + (S(i).yd-C(c).yd)^2 ) );
if ( temp<min_dis )
min_dis=temp;
min_dis_cluster=c;
end
end
%Energy dissipated by associated Cluster Head
min_dis;
if (min_dis>do)
S(i).E=S(i).E- ( ETX*(4000) + Emp*4000*( min_dis * min_dis * min_dis * min_dis));
end
if (min_dis<=do)
S(i).E=S(i).E- ( ETX*(4000) + Efs*4000*( min_dis * min_dis));
end
%Energy dissipated
if(min_dis>0)
S(C(min_dis_cluster).id).E = S(C(min_dis_cluster).id).E- ( (ERX + EDA)*4000 );
PACKETS_TO_CH(r+1)=n-dead-cluster+1;
end
S(i).min_dis=min_dis;
S(i).min_dis_cluster=min_dis_cluster;
end
end
end
hold on;
countCHs;
rcountCHs=rcountCHs+countCHs;
%Code for Voronoi Cells
%Unfortynately if there is a small
%number of cells, Matlab's voronoi
%procedure has some problems
%[vx,vy]=voronoi(X,Y);
%plot(X,Y,'r*',vx,vy,'b-');
% hold on;
% voronoi(X,Y);
% axis([0 xm 0 ym]);
end
x=1:1:r;
y=1:1:r;
%z=1:1:r;
for i=1:1:r;
x(i)=i;
y(i) = n - STATISTICS(i).DEAD;
%z(i)=CLUSTERHS(i);
end
figure(2);
plot(x,y,'k');
hold on;
title ('ALIVE NODES vs ROUNDS');
xlabel ('number of rounds');
ylabel ('number of alive nodes');
xb=[x 5000];
figure(3);
plot(xb,DEAD,'k');
hold on;
xlabel ('number of rounds');
ylabel ('number of dead nodes');
title ('DEAD NODES vs ROUNDS');
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。