👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
基于Elman神经网络预测计费系统输出的研究
简单循环网络(simple recurrent networks,简称SRN)又称为Elman network,是由Jeff Elman在1990年提出来的。Elman在Jordan network(1986)的基础上进行了创新,并且简化了它的结构,最终提出了Elman network。
Elman network就是指现在一般说的RNN(包括LSTM、GRU等等)。一个recurrent层的输出经过时延后作为下一时刻这一层的输入的一部分,然后recurrent层的输出同时送到网络后续的层,比如最终的输入层。一个Jordan network说的是直接把整个网络最终的输出(i.e. 输出层的输出)经过时延后反馈回网络的输入层,所以Jordan network的整个网络的所有层都是recurrent的。
Elman network和Jordan network通常被统称为Simple recurrent network。可能是因为Elman network里相对独立的recurrent使用起来比较灵活(比如可以用作单独的层做不同类型层的堆叠等组合;同时Jordan network在网络输出层很大的时候可能需要降维来方便输入层接受前一时间的输出),所以Elman network现在基本上是主流,以至于大家都直接叫它RNN而非它本来的名字。
一、Elman神经网络的基本原理与结构特点
- 网络结构与动态特性
Elman神经网络是一种动态递归神经网络,其核心结构在BP神经网络基础上增加了 承接层(Context Layer) ,形成四层架构:输入层、隐层、承接层和输出层。- 承接层作用:作为隐层输出的延时存储单元,将前一时刻的隐层状态反馈至当前输入,形成时间序列的动态记忆能力。这种反馈机制使网络能够捕捉计费系统中历史数据的时序依赖性和非线性变化特征。
- 数学表达:隐层输出 x(k)x(k) 和承接层状态 xc(k)xc(k) 的递推关系为:
其中 f 为激活函数(如Sigmoid),α 为衰减系数。
- 优势与局限性
- 优势:
- 适应时变系统,适合计费数据的动态预测(如收入波动、退款率变化);
- 全局稳定性强,避免了传统BP网络的梯度消失问题。
- 局限性:
- 训练速度较慢,易陷入局部最优;
- 需通过优化算法(如GA、PSO)提升性能。
二、计费系统输出的数据特征与预测需求
-
核心指标分析
计费系统的输出通常包含以下动态指标:- 财务指标:总营收、退款金额、批发成本、卖方净收入;
- 业务指标:订阅者数量、付款人计数、计费周期(如按小时/月/年);
- 系统性能指标:数据写入量、存储成本(如热存储与归档存储)。
-
数据特征
- 时序性:日/月/季度趋势(如AWS计费仪表板的日更新特性);
- 非线性:突发性退款、促销活动导致的营收波动;
- 多维度关联:计费金额与用户行为、产品类型、协议条款的耦合关系。
三、基于Elman的计费系统预测方法设计
-
数据预处理流程
- 清洗与标准化:处理缺失值(如均值填充)、异常值(箱线图筛选)、重复记录;
- 归一化:Min-Max或Z-Score标准化,消除量纲差异;
- 时序分解:利用卡尔曼滤波去噪,提取趋势项与周期项。
-
模型构建与优化
- 输入层设计:选取滞后变量(如过去7天的计费数据)作为输入节点;
- 隐层节点优化:通过试错法或网格搜索确定最优节点数(一般8-20);
- 超参数调优:
- 遗传算法(GA) :编码权值阈值,通过选择、交叉、变异优化全局收敛性;
- 粒子群优化(PSO) :自适应惯性权重与学习因子提升寻优效率;
- 鲸鱼算法(WOA) :混沌映射与自适应收敛因子增强局部搜索能力。
- 训练与预测流程
# 示例:Matlab中Elman网络初始化与训练 net = newelm(minmax(input_data), [hidden_nodes, output_nodes], {'tansig', 'purelin'}, 'traingdm'); net.trainParam.epochs = 1000; net = train(net, input_seq, target_seq); predicted_output = sim(net, test_input);
运行
四、实验与性能评估
-
评估指标
- 误差指标:MAE、RMSE、MAPE(如WOA-Elman在舆情预测中MAPE=4.78%);
- 稳定性指标:预测结果的标准差、最大偏差;
- 业务指标:计费准确率(如系统负载预测误差≤3%)。
-
对比实验设计
- 基准模型:BP神经网络、ARIMA、SVM;
- 优化效果验证:对比GA-Elman与标准Elman的收敛速度与误差下降率(如PSO-ENN在TEC预测中RMSE降低20%)。
五、应用场景与挑战
-
典型场景
- 短期预测:未来7天计费收入趋势;
- 异常检测:突增退款或异常计费行为的早期预警;
- 资源规划:基于存储成本预测优化云资源分配。
-
挑战与改进方向
- 数据稀疏性:计费低频场景(如年度订阅)需结合插值或迁移学习;
- 实时性要求:通过模型轻量化(如剪枝、量化)提升在线预测速度;
- 多源数据融合:整合用户画像、市场活动等外部数据提升预测维度。
六、结论
Elman神经网络通过动态递归结构有效捕捉计费系统的时序特征,结合优化算法可显著提升预测精度。未来研究需进一步探索混合模型(如SVM-Elman)与边缘计算部署,以应对大规模计费系统的实时性与复杂性需求。
参考文献
📚2 运行结果
主函数部分代码:
y(1)=0.1; % Initial conditions
y(2)=0.1;
index=1;% Variable for plotting test data
sw=2; % Variable to switch between random and nearly best initial
% conditions for weights (sw=1 for random, sw=2 for nearly best)
nnu = 1; % Input layer
nnx = 6; % Hidden layer
nny = 1; % Output layer
training_set_size=900; % Training data(First 900 elements of
% Billings System)
test_set_size =training_set_size+40; % Test data
iteration=1;
momentum=0.65;
if sw==1
n=0.029; % Learning rate
weights_u = randn(nnx,nnu); % Initial conditions for weights
weights_x = randn(nnx,nnx);
weights_y = randn(nny,nnx);
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]林春燕,朱东华.基于Elman神经网络的股票价格预测研究[J].计算机应用,2006(02):476-477+484.